Over 65 % of people with obesity display the metabolic-associated fatty liver disease (MAFLD), which can manifest as steatohepatitis, fibrosis, cirrhosis, or liver cancer. The development and progression of MAFLD involve hepatic insulin resistance and reduced insulin clearance. This review discusses the relationships between altered insulin signaling, hepatic insulin resistance, and reduced insulin clearance in the development of MAFLD and how this provides the impetus for exploring the use of insulin sensitizers to curb this disease. The review also explores the role of the insulin receptor in hepatocytes and hepatic stellate cells and how it signals in metabolic and end-stage liver diseases. Finally, we discuss new research findings that indicate that advanced hepatic diseases may be an insulin-sensitive state in the liver and deliberate whether insulin sensitizers should be used to manage late-stage liver diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330768 | PMC |
http://dx.doi.org/10.1016/j.metabol.2023.155607 | DOI Listing |
Nutrients
December 2024
Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others.
View Article and Find Full Text PDFNutrients
December 2024
Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea.
Background/objectives: Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA.
A diet containing foods that are sources of S-methylmethionine (SMM), and its use as a dietary supplement, have demonstrated beneficial health effects. Thus, the objective of this work was to evaluate the inclusion of SMM as a dietary supplement in C57BL/6J high-fat-fed mice to verify whether this compound alone would be responsible for these positive effects. Mice were divided into three groups: LF (low-fat diet), HF (high-fat diet), and HF+SMM (high-fat diet plus SMM), and maintained for 10 weeks with water and food provided ad libitum.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria. Electronic address:
Camel α-Lactalbumin (α-LAC) has been shown to exert bioactivities for Reactive oxygen species (ROS) scavenging and anti-inflammation, showing the ability to treat obesity-related metabolic disorders. Herein, we present a novel process to purify α-LAC in a single chromatographic step from camel whey in a flow-through format. We also demonstrate the role of α-LAC modulation strategies for the treatment of obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!