General mathematical reasoning is computationally undecidable, but humans routinely solve new problems. Moreover, discoveries developed over centuries are taught to subsequent generations quickly. What structure enables this, and how might that inform automated mathematical reasoning? We posit that central to both puzzles is the structure of procedural abstractions underlying mathematics. We explore this idea in a case study on five sections of beginning algebra on the Khan Academy platform. To define a computational foundation, we introduce Peano, a theorem-proving environment where the set of valid actions at any point is finite. We use Peano to formalize introductory algebra problems and axioms, obtaining well-defined search problems. We observe existing reinforcement learning methods for symbolic reasoning to be insufficient to solve harder problems. Adding the ability to induce reusable abstractions ('tactics') from its own solutions allows an agent to make steady progress, solving all problems. Furthermore, these abstractions induce an order to the problems, seen at random during training. The recovered order has significant agreement with the expert-designed Khan Academy curriculum, and second-generation agents trained on the recovered curriculum learn significantly faster. These results illustrate the synergistic role of abstractions and curricula in the cultural transmission of mathematics. This article is part of a discussion meeting issue 'Cognitive artificial intelligence'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239677 | PMC |
http://dx.doi.org/10.1098/rsta.2022.0044 | DOI Listing |
Eur J Neurosci
January 2025
Department of Psychology, National Chengchi University, Taipei, Taiwan.
Word problems are essential for math learning and education, bridging numerical knowledge with real-world applications. Despite their importance, the neural mechanisms underlying word problem solving, especially in children, remain poorly understood. Here, we examine children's cognitive and brain response profiles for arithmetic word problems (AWPs), which involve one-step mathematical operations, and compare them with nonarithmetic word problems (NWPs), structured as parallel narratives without numerical operations.
View Article and Find Full Text PDFSci Rep
January 2025
College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, 010010, China.
In the face of forest fire emergencies, fast and efficient dispatching of rescue vehicles is an important means of mitigating the damage caused by forest fires, and is an effective method of avoiding secondary damage caused by forest fires, minimizing the damage caused by forest fires to the ecosystem, and mitigating the losses caused by economic development. this paper takes the actual problem as the starting point, constructs a reasonable mathematical model of the problem, for the special characteristics of the emergency rescue vehicle scheduling problem of forest fires, taking into account the actual road conditions in the northern pristine forest area, through the analysis of the cost of paths between the forest area and the highway, to obtain the least obstructed rescue paths, to narrow the gap between the theoretical model and the problem of the actual. Improvement of ordinary genetic algorithm, design of double population strategy selection operation, the introduction of chaotic search initialization population, to improve the algorithm's solution efficiency and accuracy, through the northern pristine forest area of Daxing'anling real forest fire cases and generation of large-scale random fire point simulation experimental test to verify the effectiveness of the algorithm, to ensure that the effectiveness and reasonableness of the solution to the problem of forest fire emergency rescue vehicle scheduling program.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
January 2025
Department of Psychology, Rutgers University, Newark.
Growing evidence highlights the predictive power of cross-notation magnitude comparison (e.g., 2/5 vs.
View Article and Find Full Text PDFSci Rep
January 2025
Chongqing Vocational Institute of Tourism, Chongqing, China.
To enhance enterprises' interactive exploration capabilities for unstructured chart data, this paper proposes a multimodal chart question-answering method. Facing the challenge of recognizing curved and irregular text in charts, we introduce Gaussian heatmap encoding technology to achieve character-level precise text annotation. Additionally, we combine a key point detection algorithm to extract numerical information from the charts and convert it into structured table data.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, 80230-901, Brazil.
Modeling the Digital Twin (DT) is an important resource for accurately representing the physical entity, enabling it to deliver functional services, meet application requirements, and address the disturbances between the physical and digital realms. This article introduces the Log Mean Kinematics Difference Synchronization (SyncLMKD) to measure the kinematic variations distributed among Digital Twin elements to ensure symmetric values relative to a reference. The proposed method employs abductive reasoning and draws inspiration from the Log Mean Temperature Difference (LMTD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!