Scale-up and techno-economic analysis of microbial electrolysis cells for hydrogen production from wastewater.

Water Res

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA. Electronic address:

Published: August 2023

Microbial electrolysis cells (MECs) have demonstrated high-rate H production while concurrently treating wastewater, but the transition in scale from laboratory research to systems that can be practically applied has encountered challenges. It has been more than a decade since the first pilot-scale MEC was reported, and in recent years, many attempts have been made to overcome the barriers and move the technology to the market. This study provided a detailed analysis of MEC scale-up efforts and summarized the key factors that should be considered to further develop the technology. We compared the major scale-up configurations and systematically evaluated their performance from both technical and economic perspectives. We characterized how system scale-up impacts the key performance metrics such as volumetric current density and H production rate, and we proposed methods to evaluate and optimize system design and fabrication. In addition, preliminary techno-economic analysis indicates that MECs can be profitable in many different market scenarios with or without subsidies. We also provide perspectives on future development needed to transition MEC technology to the marketplace.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120139DOI Listing

Publication Analysis

Top Keywords

techno-economic analysis
8
microbial electrolysis
8
electrolysis cells
8
scale-up
4
scale-up techno-economic
4
analysis microbial
4
cells hydrogen
4
hydrogen production
4
production wastewater
4
wastewater microbial
4

Similar Publications

Technoeconomic evaluation of integrating hydrothermal liquefaction in wastewater treatment plants.

Bioresour Technol

December 2024

Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus 8200, Denmark; WATEC - Center for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark. Electronic address:

This study provides a techno-economic analysis (TEA) of biocrude production via hydrothermal liquefaction (HTL), focusing on decentralized HTL plants integrated within wastewater treatment plants (WWTPs) of typical sizes (0.1 to 1.0 million population equivalents, PE).

View Article and Find Full Text PDF

The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy.

View Article and Find Full Text PDF

Technical, economic, and environmental assessment of CO₂ ship transport in carbon capture and storage.

J Environ Manage

December 2024

Professor of Geochemistry, School of Ocean & Earth Science, National Oceanography Centre Southampton and Director of the Southampton Marine & Maritime Institute, University of Southampton, United Kingdom. Electronic address:

CO shipping is integral to expediting the implementation Capture Utilization and Storage (CCUS) initiatives within the United Kingdom. This study introduces a framework, encompassing techno-economic and environmental aspects, evaluating the maritime transportation of approximately 5.9 million tons of CO annually from the Solent region, equivalent to removing around 1.

View Article and Find Full Text PDF

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

Fueling the protein transition: Can waste-derived ethanol enable efficient and high-quality microbial protein production?

Bioresour Technol

December 2024

Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Ghent, Belgium. Electronic address:

Meeting the protein needs of a growing population will require significant resources. In this context, microbial protein (MP) offers a nutritious and versatile protein source from recovered resources. This meta-analysis of over 100 studies examines the efficiency and nutritional quality of MP production using ethanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!