Context.—: Current approaches for characterizing retained lung dust using pathologists' qualitative assessment or scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) have limitations.
Objective.—: To explore polarized light microscopy coupled with image-processing software, termed quantitative microscopy-particulate matter (QM-PM), as a tool to characterize in situ dust in lung tissue of US coal miners with progressive massive fibrosis.
Design.—: We developed a standardized protocol using microscopy images to characterize the in situ burden of birefringent crystalline silica/silicate particles (mineral density) and carbonaceous particles (pigment fraction). Mineral density and pigment fraction were compared with pathologists' qualitative assessments and SEM/EDS analyses. Particle features were compared between historical (born before 1930) and contemporary coal miners, who likely had different exposures following changes in mining technology.
Results.—: Lung tissue samples from 85 coal miners (62 historical and 23 contemporary) and 10 healthy controls were analyzed using QM-PM. Mineral density and pigment fraction measurements with QM-PM were comparable to consensus pathologists' scoring and SEM/EDS analyses. Contemporary miners had greater mineral density than historical miners (186 456 versus 63 727/mm3; P = .02) and controls (4542/mm3), consistent with higher amounts of silica/silicate dust. Contemporary and historical miners had similar particle sizes (median area, 1.00 versus 1.14 μm2; P = .46) and birefringence under polarized light (median grayscale brightness: 80.9 versus 87.6; P = .29).
Conclusions.—: QM-PM reliably characterizes in situ silica/silicate and carbonaceous particles in a reproducible, automated, accessible, and time/cost/labor-efficient manner, and shows promise as a tool for understanding occupational lung pathology and targeting exposure controls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542675 | PMC |
http://dx.doi.org/10.5858/arpa.2022-0427-OA | DOI Listing |
Sensors (Basel)
December 2024
Shenyang Research Institute, China Coal Technology and Engineering Group, Shenyang 113122, China.
The coal industry is a high risk, high difficulty industry, and the annual global mine accident rate is high, so the safety of coal mine underground operations has been a concern. With the development of technology, the application of intelligent security technology in coal mine safety has broad prospects. In this paper, the research progress of vital signs monitoring and support equipment for underground personnel in coal mines is reviewed.
View Article and Find Full Text PDFNoise Health
January 2025
School of Public Health, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China.
Objectives: This study aims to investigate the relationship between noise kurtosis and cardiovascular disease (CVD) risk while exploring the potential of kurtosis assessment in evaluating CVD risk associated with complex noise exposure in coal mines.
Methods: This cross-sectional study started in April 2021 and ended in November 2022. It involved 705 coal miners selected from 1045 participants.
Front Public Health
December 2024
School of Economics and Management, Huainan Normal University, Huainan, China.
China's "14th Five-Year Plan" proposes the construction of a "Digital China," posing the challenge of digital transformation to coal mining enterprises. It is critical to compare the effectiveness of investing in digital devices with that of human capital. This study establishes a structural equation model based on the 'regulation-situation-behavior' theoretical framework.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
The coal mine workplace environment is a significant factor in inducing occupational health issues, such as intestinal dysfunction in coal miners. However, the mechanism by which the coal mine workplace environment induces intestinal dysfunction is still unclear. Therefore, we applied the Coal Mine Workplace Environment Biological Simulation (CEBS) model which was previously constructed to detect the intestinal pathological manifestations and changes in the gut microbiota of mice from the perspectives of intestinal function, tissue morphology, and cell molecules.
View Article and Find Full Text PDFMin Metall Explor
November 2024
Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA USA.
Unlabelled: This assessment was designed to explore and characterize the airborne particles, especially for the sub-micrometer sizes, in an underground coal mine. Airborne particles present in the breathing zone were evaluated by using both (1) direct reading real-time instruments (RTIs) to measure real-time particle number concentrations in the workplaces and (2) gravimetric samplers to collect airborne particles to obtain mass concentrations and conduct further characterizations. Airborne coal mine particles were collected via three samplers: inhalable particle sampler (37 mm cassette with polyvinyl chloride (PVC) filter), respirable dust cyclone (10 mm nylon cyclone with 37 mm Zefon cassette and PVC filter), and a Tsai diffusion sampler (TDS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!