Raw water biofiltration for surface water manganese control.

Sci Rep

Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada.

Published: June 2023

Manganese (Mn) control in surface water systems is a challenge for the drinking water industry, especially through a sustainability framework. Current methods for removing manganese from surface water use strong oxidants that embed carbon and can be expensive and harmful to human health and the environment. In this study, we used a simple biofilter design to remove manganese from lake water, without conventional surface water pre-treatments. Biofilters with aerated influent removed manganese to concentrations below 10 µg/L when receiving influent water containing > 120 µg/L of dissolved manganese. Manganese removal was not inhibited by high iron loadings or poor ammonia removal, suggesting that removal mechanisms may differ from groundwater biofilters. Experimental biofilters also achieved lower effluent manganese concentrations than the full-scale conventional treatment process, while receiving higher manganese concentrations. This biological approach could help achieve sustainable development goals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239442PMC
http://dx.doi.org/10.1038/s41598-023-36348-1DOI Listing

Publication Analysis

Top Keywords

surface water
16
manganese concentrations
12
manganese
9
manganese control
8
water
7
raw water
4
water biofiltration
4
surface
4
biofiltration surface
4
water manganese
4

Similar Publications

Ambient-pressure selective hydrogenation of unsaturated aldehydes and ketones into unsaturated alcohols in the water phase.

Dalton Trans

January 2025

Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.

A universal and green catalytic system for the hydrogenation of unsaturated aldehydes and ketones into the corresponding alcohols with the CC bonds retained under atmospheric hydrogen pressure in the water phase was realized by -functionalized amino ligand-stabilized ruthenium complexes (-PPhCHNHMe)[(CHNHR)]RuCl (R = H, Me, Et) and (-PPhCHNMe)[(CHNHEt)]RuCl with wide substrate compatibility and excellent functionality tolerance. The structural synergism between -PPhCHNHMe and (CHNHEt) achieves the enhanced performance, with a positive correlation with the electron density of the amino ligand.

View Article and Find Full Text PDF

The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.

View Article and Find Full Text PDF

Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!