The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-023-00768-1DOI Listing

Publication Analysis

Top Keywords

production astaxanthin
12
astaxanthin
11
haematococcus pluvialis
8
industrial production
8
astaxanthin production
8
production
5
advancement carotenogenesis
4
carotenogenesis astaxanthin
4
astaxanthin haematococcus
4
pluvialis
4

Similar Publications

Co-delivery of astaxanthin using positive synergistic effect from biomaterials: From structural design to functional regulation.

Food Chem

December 2024

College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China. Electronic address:

The powerful antioxidant properties of astaxanthin (AST) face two significant challenges: low water solubility and poor chemical stability. To overcome them, extensive research and development efforts have been directed toward creating effective delivery systems. Among them, the positive synergistic effect between biomaterials can be used to refine the design of delivery systems.

View Article and Find Full Text PDF

Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more.

View Article and Find Full Text PDF

Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review.

Bioresour Technol

December 2024

CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation.

View Article and Find Full Text PDF

Enhancing astaxanthin accumulation in immobilized Haematococcus pluvialis via alginate hydrogel membrane.

Int J Biol Macromol

December 2024

State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

Immobilized cultivation is anticipated to be effective for enhancing both biomass and astaxanthin accumulation in Haematococcus pluvialis (H. pluvialis). A novel fabrication method of alginate hydrogel membrane (AHM) was introduced for immobilized cultivation of H.

View Article and Find Full Text PDF

The green alga (formerly ) is a primary source of astaxanthin, a ketocarotenoid with high antioxidant activity and several industrial applications. Here, the highly repetitive genome was reconstructed by exploiting next-generation sequencing integrated with Hi-C scaffolding, obtaining a 151 Mb genome assembly in 32 scaffolds at a near-chromosome level with high continuity. Surprisingly, the distribution of the single-nucleotide-polymorphisms identified demonstrates a diploid configuration for the genome, further validated by Sanger sequencing of heterozygous regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!