Rapid development of gold nanoparticles (GNPs) in delivering pharmaceutics and therapeutics approaches still linger the concerns of their toxic effects. Nonalcoholic steatohepatitis (NASH) is characterized by excessive lipid accumulation and overt hepatic inflammatory damage, and is the leading cause of chronic liver disease worldwide. This study aimed to assess the potential hepatic effects of GNPs on NASH phenotype and progression in mice. Mice were fed a MCD diet for 8 weeks to elicit NASH and then intravenously injected with PEG-GNPs at a single dose of 1, 5, and 25 mg/kg-bw. After 24 h and 1 week of administration, the levels of plasma ALT and AST, and the number of lipid droplets, the degree of lobular inflammation and the contents of triglycerides and cholesterols in the livers of the NASH mice significantly increased compared with the untreated NASH mice, indicating that the severity of MCD diet-induced NASH-like symptoms in mice increased after PEG-GNP administration. Moreover, the aggravated hepatic steatosis in a manner involving altered expression of the genes related to hepatic de novo lipogenesis, lipolysis, and fatty acid oxidation was observed after PEG-GNP administration. Additionally, the RNA levels of biomarkers of hepatic pro-inflammatory responses, endoplasmic reticulum stress, apoptosis, and autophagy in MCD-fed mice increased compared with the untreated NASH group. Moreover, PEG-GNP-treated NASH mice displayed an increase in MCD diet-induced hepatic fibrosis, revealed by massive deposition of collagen fiber in the liver and increased expression of fibrogenic genes. Collectively, these results suggest that hepatic GNP deposition after PEG-GNP administration increase the severity of MCD-induced NASH phenotype in mice, which is attributable to, in large part, increased steatohepatitic injury and liver fibrosis in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.impact.2023.100469 | DOI Listing |
Food Sci Nutr
January 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences Ibn Zohr University Agadir Morocco.
Hepatic steatosis/non-alcoholic fatty liver disease is a major public health delinquent caused by the excess deposition of lipid into lipid droplets (LDs) as well as metabolic dysregulation. Hepatic cells buildup with more fat molecules when a person takes high fat diet that is excessive than the body can handle. At present, millions of people in the world are affected by this problem.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
January 2025
Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
Purpose: Mitochondrial dysfunction mediated by c-Jun N-terminal kinase (JNK) plays an important role in lipotoxic liver injury in nonalcoholic steatohepatitis (NASH). This study aims to investigate the pharmacological mechanism of Jiangzhi Granule (JZG), a Chinese herbal formula against NASH, with a focus on its regulation of JNK signaling-mediated mitochondrial function.
Methods: Hepatocytes were induced by palmitic acid (PA) for 24 h to establish an in vitro lipotoxic model, which was simultaneously treated with either JZG or vehicle control.
Nat Commun
January 2025
NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.
View Article and Find Full Text PDFJ Hepatol
January 2025
MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA.
Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China. Electronic address:
Background: Celastrol was recently identified as a potential treatment for obesity and hepatic steatosis. However, whether Celastrol effectively suppresses the nonalcoholic fatty liver disease (NAFLD) stage remains unknown. This study aimed to evaluate the role of Celastrol in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!