Large-scale arsenic mobilization from legacy sources in anoxic aquifers: Multiple methods and multi-decadal perspectives.

Sci Total Environ

Department of Physical Geography, Bolin Center for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden.

Published: September 2023

While geogenic arsenic (As) contamination of aquifers have been intensively investigated across the world, the mobilization and transport of As from anthropogenic sources have received less scientific attention, despite emerging evidence of poor performance of widely used risk assessment models. In this study we hypothesize that such poor model performance is largely due to insufficient attention to heterogeneous subsurface properties, including the hydraulic conductivity K and the solid-liquid partition (K), as well as neglect of laboratory-to-field scaling effects. Our multi-method investigation includes i) inverse transport modelling, ii) in-situ measurements of As concentrations in paired samples of soil and groundwater, and iii) batch equilibrium experiments combined with (iv) geochemical modelling. As case study we use a unique 20-year series of spatially distributed monitoring data, capturing an expanding As plume in a Chromated Copper Arsenate (CCA)-contaminated anoxic aquifer in southern Sweden. The in-situ results showed a high variability in local K values of As (1 to 107 L kg), implying that over-reliance of data from only one or few locations can lead to interpretations that are inconsistent with field-scale As transport. However, the geometric mean of the local K values (14.4 L kg) showed high consistency with the independently estimated field-scale "effective K" derived from inverse transport modelling (13.6 L kg). This provides empirical evidence for the relevance of using geometric averaging when estimating large-scale "effective K" values from local measurements within highly heterogenous, isotropic aquifers. Overall, the considered As plume is prolonged by about 0.7 m year, now starting to extend beyond the borders of the industrial source area, a problem likely shared with many of the world's As-polluted sites. In this context, geochemical modelling assessments, as presented here, provided a unique understanding of the processes governing As retention, including local variability in, e.g., Fe/Al-(hydr)oxides contents, redox potential and pH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164565DOI Listing

Publication Analysis

Top Keywords

inverse transport
8
transport modelling
8
geochemical modelling
8
local values
8
large-scale arsenic
4
arsenic mobilization
4
mobilization legacy
4
legacy sources
4
sources anoxic
4
anoxic aquifers
4

Similar Publications

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

Real-world effectiveness and safety of sodium-glucose co-transporter 2 inhibitors in chronic kidney disease.

Sci Rep

January 2025

Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Article Synopsis
  • SGLT2 inhibitors (SGLT2i) show promise in slowing chronic kidney disease (CKD) progression but lack extensive real-world data in diverse populations.
  • This study analyzed data from nearly 7,000 CKD patients (stages 2-4) treated with either SGLT2i or RAAS blockers to evaluate effectiveness and safety.
  • Results indicated that SGLT2i therapy was linked to a significantly lower risk of severe kidney-related events and CKD progression, with similar adverse event rates and fewer urinary tract infections compared to RAAS treatment.
View Article and Find Full Text PDF

The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae.

View Article and Find Full Text PDF

In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.

View Article and Find Full Text PDF

Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!