Improving the representation of stream water sources in surrogate nutrient models with water isotope data.

Sci Total Environ

Ontario Ministry of the Environment, Conservation and Parks, Toronto, Canada.

Published: September 2023

An important part of meeting nutrient reduction goals in the lower Great Lakes basin and assessing the success of different land management strategies is modeling nutrient losses from agricultural land. This study aimed to improve the representation of water source contributions to streamflow in generalized additive models for predicting nutrient fluxes from three headwater agricultural streams in southern Ontario monitored during the Multi-Watershed Nutrient Study (MWNS). The previous development of these models represented baseflow contributions to streamflow using the baseflow proportion derived using an uncalibrated recursive digital filter. Recursive digital filters are commonly used to partition stream discharge into separate components from slower and faster pathways. In this study, we calibrated the recursive digital filter using stream water source information from stable isotopes of oxygen in water. Across sites, optimization of the filter parameters reduced bias in baseflow estimates by as much as 68 %. In most cases, calibrating the filter also improved agreement between filter-derived baseflow and baseflow calculated from isotope and streamflow data: the average Kling-Gupta Efficiencies using default and calibrated parameters were 0.44 and 0.82, respectively. When incorporated into the generalized additive models, the revised baseflow proportion predictor was more often statistically significant, improved model parsimony, and reduced prediction uncertainty. Moreover, this information allowed for a more rigorous interpretation of how different stream water sources influence nutrient losses from the agricultural MWNS watersheds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164544DOI Listing

Publication Analysis

Top Keywords

stream water
12
recursive digital
12
water sources
8
nutrient losses
8
losses agricultural
8
water source
8
contributions streamflow
8
generalized additive
8
additive models
8
baseflow proportion
8

Similar Publications

Models estimate up to 3 million metric tons of river plastic waste flowing into the world's ocean every year. All ocean-bound rivers endure tidal impact to some degree, but there is a lack of data on the resulting marine emission effects. To address this gap we analyzed the trajectories of grapefruit-sized floating GPS drifters (n = 63) in the Chao Phraya estuary in Bangkok, Thailand, in the three seasons of 2022-2023.

View Article and Find Full Text PDF

Microplastic and microfiber contamination in the Tiber River, Italy: Insights into their presence and chemical differentiation.

Mar Pollut Bull

January 2025

Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; National Laboratory for Water Sciences and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H1113 Budapest, Hungary. Electronic address:

Microplastics (MPs) are an emerging environmental concern, but studies on these contaminants, particularly in river ecosystems, remain scarce. Research has indicated that MPs in the environment are predominantly microfibers (MFs); however, a few studies suggest that the MFs encountered are chiefly of natural origin. In this study, we aimed to improve the understanding of MP/MFs (both plastic and natural), among microparticle (solid particles >10 μm to <5000 μm; mainly of plastic as well as natural origin) loads in the Tiber River, Italy, by analyzing the physicochemical properties of surface water and assessing the abundance and characteristics of MPs-MFs at three sites: Ponte Grillo, Aniene, and Magliana, along a 60 km stretch.

View Article and Find Full Text PDF

Understanding the distribution and drivers of microplastics (MPs) in remote and sensitive environments is essential for assessing their ecological impacts and devising mitigation strategies. This study investigates the distribution and characteristics of MPs in streams and sediments of the Mt. Everest region.

View Article and Find Full Text PDF

Treated municipal wastewater effluent is an important pathway for Contaminants of Emerging Concern (CEC) to enter aquatic ecosystems. As the aging wastewater infrastructure in many industrialized countries requires upgrades or replacement, assessing new treatment technologies in the context of CEC effects may provide additional support for science-based resource management. Here, we used three lines of evidence, analytical chemistry, fish exposure experiments, and fish and water microbiome analysis, to assess the effectiveness of membrane bioreactor treatment (MBR) to replace traditional activated sludge treatment.

View Article and Find Full Text PDF

Three fish species (common carp, Wels catfish, and silver carp) were collected from three locations along the Danube River in Serbia, and fish meat was analyzed for the content of toxic elements, micro- and macrominerals. Silver carp had the highest lead (Pb), arsenic (As), and cadmium (Cd) content, while Wels catfish had the highest level of mercury (Hg). Moreover, metal pollution index (MPI) ranged from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!