Exosomal miR-17-92 derived from human mesenchymal stem cells promotes wound healing by enhancing angiogenesis and inhibiting endothelial cell ferroptosis.

Tissue Cell

Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China. Electronic address:

Published: August 2023

Background: Wound healing is a complex and dynamic process that involves a series of cellular and molecular events. Mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have crucial functions in cutaneous wound healing. MiR-17-92 is a multifunctional microRNA (miRNA) cluster that plays vital roles in tissue development and tumor angiogenesis. This study aimed to explore the function of miR-17.92 in wound healing as a component of MSC-Exos.

Methods: Human MSCs were cultured in serum-free medium, and exosomes were collected by ultracentrifugation. The levels of miR-17-92 in MSCs and MSC-Exos were determined by quantitative real-time polymerase chain reaction. MSC-Exos were topically applied to full-thickness excision wounds in the skin of miR-17-92 knockout (KO) and wild-type (WT) mice. The proangiogenic and antiferroptotic effects of MSC-Exos overexpressing miR-17-92 were assayed by evaluating the relative levels of angiogenic and ferroptotic markers.

Results: MiRNA-17-92 was found to be highly expressed in MSCs and enriched in MSC-Exos. Moreover, MSC-Exos promoted the proliferation and migration of human umbilical vein endothelial cells in vitro. KO of miR-17-92 effectively attenuated the promotion of wound healing by MSC-Exos. Furthermore, exosomes derived from miR-17-92-overexpressing human umbilical cord-derived MSCs accelerated cell proliferation, migration, angiogenesis, and enhanced against erastin-induced ferroptosis in vitro. miR-17-92 plays a key role in the protective effects of MSC-Exos against erastin-induced ferroptosis in HUVECs CONCLUSION: These findings suggest that miR-17-92 participates in the repair ability of MSC-Exos and that miR-17-92-overexpressing exosomes may represent a new strategy for cutaneous wound repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2023.102124DOI Listing

Publication Analysis

Top Keywords

wound healing
20
msc-exos
9
mesenchymal stem
8
stem cells
8
cutaneous wound
8
effects msc-exos
8
proliferation migration
8
human umbilical
8
vitro mir-17-92
8
erastin-induced ferroptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!