Waste biomass treatment is a globally urgent matter which highly relates to environmental quality and human health. Here, a flexible suite of smouldering-based waste biomass processing technologies is developed and four processing strategies: (a) full smouldering, (b) partial smouldering, (c) full smouldering with a flame, and (d) partial smouldering with a flame, are proposed. The gaseous, liquid, and solid products of each strategy are quantified under various airflow rates. Then, a multi-criteria analysis in terms of environmental impact, carbon sequestration, waste removal efficiency, and by-product value is performed. The results show that full smouldering achieves the highest removal efficiency but generates significant greenhouse and toxic gases. Partial smouldering effectively generates stable biochar, sequesters over 30% carbon, and therefore reduces the greenhouse gases to the atmosphere. By applying a self-sustained flame, the toxic gases are significantly reduced to clean smouldering emissions. Finally, the process of partial smouldering with a flame is recommended to process the waste biomass that can sequester more carbon as biochar, minimize carbon emissions and mitigate the pollution. And the process of full smouldering with a flame is preferred to maximally reduce the waste volume with minimum environmental impact. This work enriches strategies for carbon sequestration and environmentally friendly waste biomass processing technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2023.05.038DOI Listing

Publication Analysis

Top Keywords

waste biomass
20
full smouldering
16
partial smouldering
16
smouldering flame
16
processing technologies
12
smouldering
10
biomass processing
8
environmental impact
8
carbon sequestration
8
removal efficiency
8

Similar Publications

Characterization and rational engineering of a novel laccase from Geobacillus thermocatenulatus M17 for improved lignin degradation activity.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China. Electronic address:

Lignin, with its complex, high-molecular-weight aromatic polymer structure and stable ether or ester bonds, greatly impedes the efficient degradation of lignocellulosic waste. Bacterial laccases have gained attention for their potential in lignocellulosic waste degradation due to their resilience in extreme conditions and ability to be produced in large quantities. In this study, a novel laccase from Geobacillus thermocatenulatus M17 was identified and expressed in E.

View Article and Find Full Text PDF

Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth.

New Phytol

December 2024

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.

View Article and Find Full Text PDF

Compared to the laboratory preparation of biochar, there is less research on the adsorption of antibiotics by industrial production of biochar in water. In this study, three types of industrial production biochar (peanut shell biochar, sludge biochar, and perishable waste biochar) were selected, and their adsorption performance for tetracycline in composite-polluted water was systematically studied. The results indicated that the Freundlich equation could well fit the adsorption isotherms of the three types of biochar for tetracycline.

View Article and Find Full Text PDF

Constructed wetlands, serving as artificially simulated natural wetland water treatment systems, have emerged as effective technologies for ecologically treating wastewater. Biochar, a carbon material derived from biomass waste pyrolysis, possesses significant specific surface area, abundant functional groups, and high stability. The integration of biochar into artificial wetland systems enhances the removal efficiency of pollutants.

View Article and Find Full Text PDF

The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!