Identification of contaminant sources in rivers is crucial for river protection and emergency response. This study presents an innovative approach for identifying river pollution sources by using Bayesian inference and cellular automata (CA) modeling. A general Bayesian framework is proposed that combines the CA model with observed data to identify unknown sources of river pollution. To reduce the computational burden of the Bayesian inference, a CA contaminant transport model is developed to efficiently simulate pollutant concentration values in the river. These simulated concentration values are then used to calculate the likelihood function of available measurements. The Markov chain Monte Carlo (MCMC) method is used to produce the posterior distribution of contaminant source parameters, which is a sampling-based method that enables the estimation of complex posterior distributions. The suggested methodology is applied to a real case study of the Fen River in Yuncheng City, Shanxi Province, Northern China, and it estimates the release time, release mass, and source location with relative errors below 19%. The research indicates that the proposed methodology is an effective and flexible way to identify the location and concentrations of river contaminant sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27988-x | DOI Listing |
Environ Sci Pollut Res Int
January 2025
South African Institute for Aquatic Biodiversity, Makhanda, 6140, South Africa.
Riverine physical and chemical characteristics are influencing ecosystem integrity while shaping and impacting species richness and diversity. Changes in these factors could potentially influence community structuring through competition, predation and localised species extinctions. In this study, eight sampling sites over multiple seasons were assessed along the streams draining the City of Nelspruit, South Africa, to examine river health based on water and sediment quality, while using macroinvertebrates as bioindicators for pollution.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Center for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
In the Johor River Basin, a comprehensive analysis was conducted on 24 water environmental parameters across 33 sampling sites over 3 years, encompassing both dry and wet seasons. A total of 396 water samples were collected and analyzed to calculate the Water Quality Index (WQI). To further assess water quality and pinpoint potential pollution sources, multivariate techniques such as principal component analysis (PCA) and cluster analysis (CA), alongside spatial analysis using inverse distance weighted (IDW) interpolation, were employed.
View Article and Find Full Text PDFAnal Methods
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and bromate (BrO) are disinfection byproducts (DBPs) formed during drinking water treatment and pose health risks. Rapid and reliable detection of these DBPs is essential for ensuring water safety. Non-suppressed ion chromatography (IC)-electrospray ionization mass spectrometry (IC-ESI-MS/MS) offers a promising approach for simultaneous analysis of organic haloacetic acids (HAAs) and inorganic oxyhalides, but previous methods using toxic methylamine can pose health risks.
View Article and Find Full Text PDFAnn Agric Environ Med
December 2024
Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland.
Objective: The aim of the study is to verify whether the electronic nose system - an array of 17 gas sensors with a signal analysis system - is a useful tool for the classification and preliminary assessment of the quality of drainage water.
Material And Methods: Water samples for analysis were collected in the Park Ludowy (People's Park), located next to the Bystrzyca River, near the city center of Lublin in eastern Poland. Drainage water was sampled at 4 different points.
Mar Environ Res
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address:
Water and suspended particulate matter (SPM) were collected from Xiaoqing Estuary and its adjacent waters in August 2022 to study the spatial distribution and risk assessment of Hg and As. The content of Hg in SPM samples ranged from 4.7152 to 446.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!