A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impregnation of biochar with montmorillonite and its activation for the removal of azithromycin from aqueous media. | LitMetric

Impregnation of biochar with montmorillonite and its activation for the removal of azithromycin from aqueous media.

Environ Sci Pollut Res Int

Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Zhejiang University, Hangzhou, 310058, China.

Published: July 2023

An inexpensive and environmentally friendly composite synthesized from rice husk, impregnated with montmorillonite and activated by carbon dioxide, was investigated for the removal of azithromycin from an aqueous solution. Various techniques were used to characterize adsorbents in detail. The sorption process was primarily regulated by the solution pH, pollutant concentration, contact duration, adsorbent dose, and solution temperature. The equilibrium data were best analyzed using the nonlinear Langmuir and Sips (R > 0.97) isotherms, which revealed that adsorption occurs in a homogenous manner. The adsorption capacity of pristine biochar and carbon dioxide activated biochar-montmorillonite composite was 33.4 mg g and 44.73 mg g, respectively. Kinetic studies identified that the experimental data obeyed the pseudo-second-order and Elovich models (R > 0.98) indicating the chemisorption nature of adsorbents. The thermodynamic parameters determined the endothermic and spontaneous nature of the reaction. The ion exchange, π-π electron-donor-acceptor (EDA) interactions, hydrogen-bonding, and electrostatic interactions were the plausible mechanisms responsible for the adsorption process. This study revealed that a carbon dioxide activated biochar-montmorillonite composite may be used as an effective, sustainable, and economical adsorbent for the removal of azithromycin from polluted water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239054PMC
http://dx.doi.org/10.1007/s11356-023-27908-zDOI Listing

Publication Analysis

Top Keywords

removal azithromycin
12
carbon dioxide
12
azithromycin aqueous
8
dioxide activated
8
activated biochar-montmorillonite
8
biochar-montmorillonite composite
8
impregnation biochar
4
biochar montmorillonite
4
montmorillonite activation
4
activation removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!