Ral RAS GTPases are directly activated by KRAS through a trimeric complex with a guanine exchange factor. Ral is considered undruggable and lacks an accessible cysteine for covalent drug development. Previously we had reported an aryl sulfonyl fluoride fragment that formed a covalent bond at Tyr-82 on Ral and created a deep and well-defined pocket. Here, we explore this pocket further through design and synthesis of several fragment derivatives. The fragment core is modified by introducing tetrahydronaphthalene or benzodioxane rings to enhance affinity and stability of the sulfonyl fluoride reactive group. The deep pocket in the Switch II region is also explored by modifying the aromatic ring of the fragment that is ensconced into the pocket. Compounds 19 (SOF-658) and 26 (SOF-648) formed a single robust adduct specifically at Tyr-82, inhibited Ral GTPase exchange in buffer and in mammalian cells, and blocked invasion of pancreatic ductal adenocarcinoma cancer cells. Compound 19 (SOF-658) was stable in buffer, mouse, and human microsomes suggesting that further optimization could lead to small molecules to probe Ral activity in tumor models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529880 | PMC |
http://dx.doi.org/10.1002/cmdc.202300272 | DOI Listing |
Macromol Biosci
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
Adhesive hydrogels are emerging as attractive functional materials for various fields, such as tissue engineering, wound healing, E-skins, etc. However, the removal of adhesive hydrogels from covered area may be painful and cause a secondary damage. In the current study, gelatin-based hydrogels are prepared by cross-linking with tannic acid and 4-formylphenyl boronic acid, through simultaneous dynamic covalent boronic ester and imine bond formations.
View Article and Find Full Text PDFChin Med
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
Background: Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (ATR) and agonists of type 2 receptor (ATR) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar.
View Article and Find Full Text PDFChemphyschem
January 2025
Southern Methodist University, Chemistry, 3251 Daniel Ave, 75275, Dallas, UNITED STATES.
We analyzed the intrinsic strength of distal and proximal FeN bonds and the stiffness of the axial NFeN bond angle in a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans. Ferric and ferrous oxidation states were considered. As assess- ment tool, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from our local mode theory.
View Article and Find Full Text PDFLangmuir
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, University of Washington, Seattle, Washington 98185, USA.
We derive a new expression for the strength of a hydrogen bond (VHB) in terms of the elongation of the covalent bond of the donor fragment participating in the hydrogen bond (ΔrHB) and the intermolecular coordinates R (separation between the heavy atoms) and θ (deviation of the hydrogen bond from linearity). The expression includes components describing the covalent D-H bond of the hydrogen bond donor via a Morse potential, the Pauli repulsion, and electrostatic interactions between the constituent fragments using a linear expansion of their dipole moment and a quadratic expansion of their polarizability tensor. We fitted the parameters of the model using ab initio electronic structure results for six hydrogen bonded dimers, namely, NH3-NH3, H2O-H2O, HF-HF, H2O-NH3, HF-H2O, and HF-NH3, and validated its performance for extended parts of their potential energy surfaces, resulting in a mean absolute error ranging from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!