A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular dynamics simulation of CL20/DNDAP cocrystal-based PBXs. | LitMetric

Molecular dynamics simulation of CL20/DNDAP cocrystal-based PBXs.

J Mol Model

School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China.

Published: June 2023

Context: CL-20/DNDAP cocrystal is a promising new type of explosive with exceptional energy density and detonation parameters. However, compared to TATB, FOX-7 and other insensitive explosives, it still has higher sensitivity. In order to decrease the sensitivity of CL20/DNDAP cocrystal explosive, in this article, a CL20/DNDAP cocrystal model was established, and six different types of polymers, including butadiene rubber (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), hydroxyl-terminated polybutadiene (HTPB), fluoropolymer (F), and polyvinylidene difluoride (PVDF), were added to the three cleaved surfaces of (1 0 0), (0 1 0) and (0 0 1) to obtain polymer-bonded explosives (PBXs). Predict the effects of different polymers on the stability, trigger bond length, mechanical properties, and detonation performance of PBXs. Among the six PBX models, CL-20/DNDAP/PEG model exhibited the highest binding energy and the lowest trigger bond length, indicating that CL-20/DNDAP/PEG model had the best stability, compatibility, and the least sensitivity. Furthermore, although the CL-20/DNDAP/F model demonstrated superior detonation capabilities, it should be noted that this model displayed low levels of compatibility. Overall, CL-20/DNDAP/PEG model exhibited the superior comprehensive properties, thereby demonstrating that PEG is a more suitable binder option for PBXs based on the CL20/DNDAP cocrystal.

Methods: The properties of CL-20/DNDAP cocrystal-based PBXs were predicted by molecular dynamics (MD) method under Materials Studio software. The MD simulation time step was set at 1fs and the total MD simulation time was 2ns. The Isothermal-isobaric (NPT) ensemble was used for the 2ns of MD simulation. The COMPASS force field was used, and the temperature was set at 295K.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05605-5DOI Listing

Publication Analysis

Top Keywords

cl-20/dndap/peg model
12
molecular dynamics
8
cocrystal-based pbxs
8
cl20/dndap cocrystal
8
trigger bond
8
bond length
8
model exhibited
8
simulation time
8
model
6
pbxs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!