Objective: To explore the frequency and effect of extreme temperature on the non-accidental death rate in Hulunbuir, a Chinese ice city.

Methods: From 2014 to 2018, mortality data of residents residing in Hulunbuir City were collected. The lag and cumulative effects of extreme temperature conditions on non-accidental death and respiratory and circulatory diseases were analyzed by distributed lag non-linear models (DLNM).

Results: The risk of death was the highest during high-temperature conditions, the RR value was 1.111 (95% CI 1.031 ~ 1.198). The effect was severe and acute. The risk of death during extreme low-temperature conditions peaked on the fifth day, (RR 1.057; 95% CI 1.012 ~ 1.112), then decreased and was maintained for 12 days. The cumulative RR value was 1.289 (95% CI 1.045 ~ 1.589). Heat significantly influenced the incidence of non-accidental death in both men (RR 1.187; 95% CI 1.059-1.331) and women (RR 1.252; 95% CI 1.085-1.445).

Conclusions: Regardless of the temperature effect, the risk of death in the elderly group (≥ 65 years) was significantly higher than that of the young group (0-64 years). High-temperature and low-temperature conditions can contribute to the increased number of deaths in Hulunbei. While high-temperature has an acute effect, low-temperature has a lagging effect. Elderly and women, as well as people with circulatory diseases, are more sensitive to extreme temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361884PMC
http://dx.doi.org/10.1007/s00420-023-01986-5DOI Listing

Publication Analysis

Top Keywords

extreme temperature
12
non-accidental death
12
risk death
12
temperature non-accidental
8
hulunbuir city
8
circulatory diseases
8
low-temperature conditions
8
death
6
extreme
5
95%
5

Similar Publications

Our newly developed AshPhos ligand represents a significant advancement in Buchwald-Hartwig aminations, overcoming many limitations of existing ligands. Created from affordable and accessible materials, AshPhos enhances catalytic performance, especially for extremely difficult substrates, by emphasizing the principles of ligand chelation and cooperativity. Its successful synthesis and application in catalytic aminations underscore its potential for use in the sustainable synthesis of compounds important to medicinal chemistry, materials, and energy.

View Article and Find Full Text PDF

Observation of ultraviolet photothermoelectric bipolar impulse in gallium-based heterostructure nanowires.

Nat Commun

January 2025

Key Laboratory of Advanced Photonic and Electronic Materials, Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.

The incorporation of thermal dynamics alongside conventional optoelectronic principles holds immense promise for advancing technology. Here, we introduce a GaON/GaN heterostructure-nanowire ultraviolet electrochemical cell of observing a photothermoelectric bipolar impulse characteristic. By leveraging the distinct thermoelectric properties of GaON/GaN, rapid generation of hot carriers establishes bidirectional instantaneous gradients in concentration and temperature within the nanoscale heterostructure via light on/off modulation.

View Article and Find Full Text PDF

Nitrate, a highly reactive form of inorganic nitrogen, is commonly found in aquatic environments. Understanding the dynamics of nitrate-N concentration in rivers and its interactions with other water-quality parameters is crucial for effective freshwater ecosystem management. This study uses advanced machine learning models to analyse water quality parameters and predict nitrate-N concentrations in the lower stretch of the Ganga River from the observations of six annual periods (2017 to 2022).

View Article and Find Full Text PDF

Exposure to Ambient Temperature and Functional Connectivity of Brain Resting-State Networks in Preadolescents.

J Am Acad Child Adolesc Psychiatry

January 2025

ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain; Erasmus University Medical Center, Rotterdam, The Netherlands; ICREA, Barcelona, Spain. Electronic address:

Objective: Exposure to extreme temperatures has been linked to acute mental-health events in young populations, but the underlying neural mechanisms are not well understood. Resting-state functional magnetic resonance imaging allows for the assessment of connectivity patterns in brain functional networks, which have been associated with mental-health disorders. We investigated the short-term effects of ambient temperature on functional connectivity of brain resting-state networks in preadolescents.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, detected even in remote regions such as the Antarctic, Arctic, and Tibetan Plateau. Thus, understanding their biodegradation processes at low temperatures is crucial. Therefore, the potential of fungal strains from the Antarctic to biodegrade PAHs was explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!