Background: Microglial cells play an important role in the immune system in the brain. Activated microglial cells are not only injurious but also neuroprotective. We confirmed marked lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression in microglial cells in pathological lesions in the neonatal hypoxic-ischemic encephalopathy (nHIE) model brain. LOX-1 is known to be an activator of cytokines and chemokines through intracellular pathways. Here, we investigated a novel role of LOX-1 and the molecular mechanism of LOX-1 gene transcription microglial cells under hypoxic and ischemic conditions.

Methods: We isolated primary rat microglial cells from 3-day-old rat brains and confirmed that the isolated cells showed more than 98% Iba-1 positivity with immunocytochemistry. We treated primary rat microglial cells with oxygen glucose deprivation (OGD) as an in vitro model of nHIE. Then, we evaluated the expression levels of LOX-1, cytokines and chemokines in cells treated with or without siRNA and inhibitors compared with those of cells that did not receive OGD-treatment. To confirm transcription factor binding to the OLR-1 gene promoter under the OGD conditions, we performed a luciferase reporter assay and chromatin immunoprecipitation assay. In addition, we analyzed reactive oxygen species and cell viability.

Results: We found that defects in oxygen and nutrition induced LOX-1 expression and led to the production of inflammatory mediators, such as the cytokines IL-1β, IL-6 and TNF-α; the chemokines CCL2, CCL5 and CCL3; and reactive oxygen/nitrogen species. Then, the LOX-1 signal transduction pathway was blocked by inhibitors, LOX-1 siRNA, the p38-MAPK inhibitor SB203580 and the NF-κB inhibitor BAY11-7082 suppressed the production of inflammatory mediators. We found that NF-κB and HIF-1α bind to the promoter region of the OLR-1 gene. Based on the results of the luciferase reporter assay, NF-κB has strong transcriptional activity. Moreover, we demonstrated that LOX-1 in microglial cells was autonomously overexpressed by positive feedback of the intracellular LOX-1 pathway.

Conclusion: The hypoxic/ischemic conditions of microglial cells induced LOX-1 expression and activated the immune system. LOX-1 and its related molecules or chemicals may be major therapeutic candidates. Video abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236821PMC
http://dx.doi.org/10.1186/s12964-023-01048-wDOI Listing

Publication Analysis

Top Keywords

microglial cells
36
lox-1
13
cells
12
lox-1 expression
12
microglial
9
immune system
8
cytokines chemokines
8
primary rat
8
rat microglial
8
olr-1 gene
8

Similar Publications

Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.

View Article and Find Full Text PDF

Role of NLRP3 Inflammasome in Chronic Pain and Alzheimer's Disease-A Review.

J Biochem Mol Toxicol

February 2025

Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China.

The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions.

View Article and Find Full Text PDF

Background: Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS.

View Article and Find Full Text PDF

Neuroprotective Effects, Mechanisms of Action and Therapeutic Potential of the Kv7/KCNQ Channel Opener QO-83 in Ischemic Stroke.

Transl Stroke Res

January 2025

Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.

Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!