Background: Although currently most widely used in mechanical ventilation and cardiopulmonary resuscitation, features of the carbon dioxide (CO) waveform produced through capnometry have been shown to correlate with V/Q mismatch, dead space volume, type of breathing pattern, and small airway obstruction. This study applied feature engineering and machine learning techniques to capnography data collected by the N-Tidal™ device across four clinical studies to build a classifier that could distinguish CO recordings (capnograms) of patients with COPD from those without COPD.

Methods: Capnography data from four longitudinal observational studies (CBRS, GBRS, CBRS2 and ABRS) was analysed from 295 patients, generating a total of 88,186 capnograms. CO sensor data was processed using TidalSense's regulated cloud platform, performing real-time geometric analysis on CO waveforms to generate 82 physiologic features per capnogram. These features were used to train machine learning classifiers to discriminate COPD from 'non-COPD' (a group that included healthy participants and those with other cardiorespiratory conditions); model performance was validated on independent test sets.

Results: The best machine learning model (XGBoost) performance provided a class-balanced AUROC of 0.985 ± 0.013, positive predictive value (PPV) of 0.914 ± 0.039 and sensitivity of 0.915 ± 0.066 for a diagnosis of COPD. The waveform features that are most important for driving classification are related to the alpha angle and expiratory plateau regions. These features correlated with spirometry readings, supporting their proposed properties as markers of COPD.

Conclusion: The N-Tidal™ device can be used to accurately diagnose COPD in near-real-time, lending support to future use in a clinical setting.

Trial Registration: Please see NCT03615365, NCT02814253, NCT04504838 and NCT03356288.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239171PMC
http://dx.doi.org/10.1186/s12931-023-02460-zDOI Listing

Publication Analysis

Top Keywords

machine learning
12
capnography data
8
n-tidal™ device
8
features
5
machine
4
machine diagnosis
4
diagnosis chronic
4
chronic obstructive
4
obstructive pulmonary
4
pulmonary disease
4

Similar Publications

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.

View Article and Find Full Text PDF

Background: Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.

View Article and Find Full Text PDF

PHIStruct: Improving phage-host interaction prediction at low sequence similarity settings using structure-aware protein embeddings.

Bioinformatics

January 2025

Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, De La Salle University, Manila, 1004, Philippines.

Motivation: Recent computational approaches for predicting phage-host interaction have explored the use of sequence-only protein language models to produce embeddings of phage proteins without manual feature engineering. However, these embeddings do not directly capture protein structure information and structure-informed signals related to host specificity.

Results: We present PHIStruct, a multilayer perceptron that takes in structure-aware embeddings of receptor-binding proteins, generated via the structure-aware protein language model SaProt, and then predicts the host from among the ESKAPEE genera.

View Article and Find Full Text PDF

Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.

Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!