Studies on charge transfer of enalapril maleate: from solid-state to molecular dynamics.

J Mol Model

Grupo de Química Teórica E Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil.

Published: June 2023

Introduction: Enalapril maleate is an antihypertensive ethyl ester pro-drug with two crystalline forms. A network of hydrogen bonds in both polymorphs plays an important role on solid-state stability, charge transfer process and degradation reactions (when exposed to high humidity, temperature and/or pH changes).

Computational Procedures: Supramolecular arrangement was proposed by Hirshfeld surface using the CrystalExplorer17 software and quantum theory of atoms in molecules. The electronic structure properties were calculated using the functional hybrid M06-2X with 6-311++G** base function employing diffuse and polarization functions to improve the description of hydrogen atoms on intermolecular interactions. Also, the H+ charge transfer between enalapril and maleate molecules was performed using Car-Parrinello molecular dynamics with the Verlet algorithm. In both simulations, the temperature of the ionic system was maintained around 300 K using the Nosé-Hoover thermostat and the electronic system evolved without the use of the thermostat.

Results: This work evaluates the effect of maleate on the structural stability of enalapril maleate solid state. The electronic structural analysis points out a partially covalent character for N1-H∙∙∙O7 interaction; and the molecular dynamic showed a decentralized hydrogen on maleate driving a decomposition by charge transfer process while a centered hydrogen driving the stabilization. The charge transfer process and the mobility of the proton (H+) between enalapril and maleate molecules was demonstrated using supramolecular modeling analyses and molecular dynamics calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05597-2DOI Listing

Publication Analysis

Top Keywords

charge transfer
20
enalapril maleate
20
molecular dynamics
12
transfer process
12
transfer enalapril
8
maleate molecules
8
maleate
7
transfer
5
enalapril
5
studies charge
4

Similar Publications

Why SbSe/CdS Interface Produces Higher Power Conversion Efficiency.

J Phys Chem Lett

January 2025

College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.

View Article and Find Full Text PDF

A series of significantly bulky mono- and di-substituted cyclic alkyl-amino carbene (cAAC)- functionalized cyclopentadiene ring (Cp) compounds were synthesized. The functionalization of the Cp ring with cAAC ligands makes them significantly bulkier, while retaining their ligation properties. These compounds display interesting fluorescence properties.

View Article and Find Full Text PDF

Rapid Charge Transfer Endowed by Heteroatom Doped Z-Scheme Van Der Waals Heterojunction for Boosting Photocatalytic Hydrogen Evolution.

Small

January 2025

College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.

Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.

View Article and Find Full Text PDF

Efficient separation of photogenerated charge carriers is essential for maximizing the photocatalytic efficiency of semiconductor materials in oxygen evolution reactions (OER). This study presents a novel trimetallic photocatalyst, MIL-100(Fe)/TiO/CoO, synthesized through a facile microwave-assisted hydrothermal method followed by atomic layer deposition (ALD). The porous MIL-100(Fe) serves as a support for the sequential deposition of TiO and CoO layers ALD, which enhances electron-hole pair separation and minimizes their recombination.

View Article and Find Full Text PDF

In silico optimization of a challenging bispecific antibody chromatography step.

Biotechnol Prog

January 2025

Automation, Digital and Learning Solutions, Cytiva, Karlsruhe, Germany.

Mechanistic modeling of chromatographic steps is an effective tool in biopharma process development that enhances process understanding and accelerates optimization efforts and subsequent risk assessment. A relatively new model for ion exchange chromatography is the colloidal particle adsorption (CPA) formalism, which promises improved separation of material and molecule-specific parameters. This case study demonstrates a straightforward CPA modeling workflow to describe an ion exchange chromatography polishing step of a knobs-into-holes construct bispecific antibody molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!