BRAF Mutations in CNS Tumors-Prognostic Markers and Therapeutic Targets.

CNS Drugs

Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.

Published: July 2023

Gliomas are a heterogeneous group of brain tumors with limited therapeutic options. However, identification of BRAF V600E mutations in a subset of gliomas has provided a genomic-targeted approach for management of these diseases. In this review, we aimed to review the role of BRAF V600E in gliomagenesis, to characterize concurrent genomic alterations and their potential prognostic implications, and to review comprehensively the efficacy data of BRAF inhibitors (combined or not with MEK inhibitors) for the treatment of low- and high-grade gliomas. We also provide a summary of the toxicity of these agents and describe resistance mechanisms that may be circumvented by alternative genomic approaches. Although the efficacy of targeted therapy for management of BRAF V600E-mutant gliomas has mostly been assessed in small retrospective and phase 2 studies with heterogeneous populations, the data generated so far are a proof of concept that genomic-directed therapies improve outcomes of patients with refractory/relapsed glioma and underpin the need of comprehensive genomic assessments for these difficult-to-treat diseases. In the future, the role of targeted therapy in the first-line setting and of genomic-directed therapies to overcome resistance mechanisms should be assessed in well-designed clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40263-023-01016-5DOI Listing

Publication Analysis

Top Keywords

braf v600e
8
resistance mechanisms
8
targeted therapy
8
genomic-directed therapies
8
braf
5
braf mutations
4
mutations cns
4
cns tumors-prognostic
4
tumors-prognostic markers
4
markers therapeutic
4

Similar Publications

Encorafenib + cetuximab (EC) is approved for previously treated BRAF V600E-mutant metastatic colorectal cancer (mCRC) based on the BEACON phase 3 study. Historically, first-line treatment of BRAF V600E-mutant mCRC with chemotherapy regimens has had limited efficacy. The phase 3 BREAKWATER study investigated EC+mFOLFOX6 versus standard of care (SOC) in patients with previously untreated BRAF V600E mCRC.

View Article and Find Full Text PDF

Management of melanoma has changed significantly with the discovery of targeted therapies and immune checkpoint inhibitors (ICI). Our aim in the study is to determine which treatment alternatives, specifically dabrafenib plus trametinib and ICIs, are effective in adjuvant therapy and which treatment is effective as first-line metastatic therapy. This retrospective, multicenter study included 120 patients diagnosed with stage IIIB-IIID melanoma receiving both adjuvant and first-line metastatic treatment between 2007 and 2023.

View Article and Find Full Text PDF

To investigate the expression pattern of pan-TRK protein in colorectal cancers with NTRK gene fusion and mismatch repair deficient (dMMR) and to analyze its molecular pathological characteristics. A total of 117 dMMR colorectal cancers diagnosed in the Department of Pathology of Henan Provincial People's Hospital, Zhengzhou, China from 2020 to 2023 were collected. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and DNA/RNA-based next-generation sequencing (NGS) were used to detect pan-TRK protein expression and fusion partner genes in tumors, and to further explore the correlation between pan-TRK staining patterns and partner genes.

View Article and Find Full Text PDF

Purpose: To present the case of a young patient with BRAF V600E-mutant cutaneous melanoma who developed bilateral choroidal metastases complicated by neovascular glaucoma (NVG) in both eyes following the interruption of nivolumab therapy.

Methods: A 28-year-old female with primary cutaneous melanoma of the left hand underwent surgical resection and adjuvant nivolumab. Immunotherapy was discontinued due to immune-related acute interstitial nephritis.

View Article and Find Full Text PDF

Irisin is a newly discovered 12 kDa messenger protein involved in energy metabolism. Irisin affects signaling pathways in several types of cancer; however, the role of irisin in metastatic melanoma (MM) has not been described yet. We explored the biological effects of irisin in in vitro models of MM cells (HBL, LND1, Hmel1 and M3) capable of the oncogenic activation of BRAF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!