AI Article Synopsis

  • Coral reefs, particularly in Kāne'ohe Bay, are significantly affected by climate change, which causes 'coral bleaching' due to heat stress disrupting the coral-algal symbiosis.
  • A study of 600 Montipora capitata colonies found that, post-2019 bleaching, the heat-tolerant symbiont Durusdinium became more prevalent; however, the overall community composition remained mostly stable.
  • Environmental factors like depth and temperature were identified as key drivers of symbiont composition, suggesting that corals have limitations in adapting their symbiont composition despite experiencing bleaching.

Article Abstract

Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed 'coral bleaching'. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kāne'ohe Bay, Hawai'i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium, the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium. We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral's stress and bleaching response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238383PMC
http://dx.doi.org/10.1038/s41598-023-35425-9DOI Listing

Publication Analysis

Top Keywords

symbiont composition
12
bleaching event
12
depth temperature
8
temperature variability
8
algal symbiont
8
relative proportion
8
community composition
8
symbiont
5
composition
5
bleaching
5

Similar Publications

Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.

View Article and Find Full Text PDF

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Microbial communities associated with the skin, gill, and gut of large yellow croaker (Larimichthys crocea).

BMC Microbiol

January 2025

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China.

The microbiota inhabiting the surface of fish mucosal tissue play important roles in the nutrition, metabolism and immune system of their host. However, most investigations on microbial symbionts have focused on the fish gut, but the microbiota associated with external mucosal tissues (such as the skin and gill) is poorly understood. This study characterised the traits and dynamic of microbial communities associated with the skin, gill and gut of large yellow croaker (Larimichthys crocea) culturing with net enclosures or pens at different sampling times (with seasonal transition).

View Article and Find Full Text PDF

Mercury and Arctic Char Gill Microbiota Correlation in Canadian Arctic Communities.

Microorganisms

November 2024

Institute of Integrative and Systems Biology, Laval University, Quebec, QC G1V 0A6, Canada.

Arctic char is a top predator in Arctic waters and is threatened by mercury pollution in the context of changing climate. Gill microbiota is directly exposed to environmental xenobiotics and play a central role in immunity and fitness. Surprisingly, there is a lack of literature studying the effect of mercury on gill microbiota.

View Article and Find Full Text PDF

Seasonal Changes in the Gut Microbiota of Halyomorpha halys.

Microb Ecol

December 2024

Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.

The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!