There is growing interest in using corrosion inhibitors and protective treatments to limit the degradation of mild steel, leading to the development of numerous Schiff bases as cutting-edge inhibitors. In this study, the effectiveness of a Schiff base, 3-((5-mercapto-1,3,4-thiadiazol-2-yl)imino)indolin-2-one (MTIO), to prevent mild steel corrosion in HCl was investigated using weight loss measurements, potentiodynamic polarization measurements, electrochemical impedance spectroscopy techniques, and surface characterization. The experimental results showed that 0.5 mM MTIO exhibited a satisfactory inhibitor efficiency of 96.9% at 303 K. The MTIO molecules physically and chemically adsorbed onto the mild steel surface following the Langmuir model, forming a compact protective film attributed to the presence of a thiazole ring in the MTIO structure. Theoretical calculations were combined with experimental techniques to investigate the anticorrosion performance and mechanism of inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238447 | PMC |
http://dx.doi.org/10.1038/s41598-023-36064-w | DOI Listing |
Nanoscale
January 2025
College of Science, China Agricultural University, Beijing, 100083, China.
Aqueous zinc-ion batteries are an appealing electrochemical energy storage solution due to their affordability and safety. Significant attention has been focused on vanadium oxide cathode materials for ZIBs, owing to their high specific capacity, unique layered or tunnel structures, and low cost. Compared to traditional methods for preparing and assembling electrode materials, direct current (DC) magnetron sputtering allows direct synthesis and uniform deposition on current collectors, offering advantages such as simplicity, mild reaction conditions, and strong film adhesion.
View Article and Find Full Text PDFInt Orthod
January 2025
Department of Orthodontics, Faculty of Dentistry, Al-Wataniya Private University, Hama, Syria.
Objectives: Apical root resorption and alveolar bone loss are potential complications associated with orthodontic treatment. This study aimed to assess apical root resorption and alveolar bone height following orthodontic treatment of moderate crowding with labial vs. lingual fixed appliances using CBCT imaging.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
There are several studies that announce the inhibitory behavior of this sort of substance to strengthen the shield of metals, which is one of the positive benefits of green inhibitors. In the current investigation, Araucaria heterophylla studied as a green corrosion inhibitor to avert the mild steel during the acidic cleaning. The examination of this plant's ability to control corrosion at different concentrations in the acidic solution used certain expert measures.
View Article and Find Full Text PDFRSC Adv
January 2025
Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
Mild steel provides strength to various building and industrial materials but it is badly affected by corrosion. In the present study, we investigate the efficacy of , a plant-based green corrosion inhibitor to minimize mild steel corrosion in a 1 M HSO solution. Weight loss, surface coverage, inhibition efficiency, and corrosion rate measurements were evaluated for various inhibitor concentrations and time intervals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:
The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!