Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3K9 and nonhistone proteins, play important roles in diverse cellular processes. Overexpression or dysregulation of G9a and GLP has been identified in various types of cancer. Here, we report the discovery of a highly potent and selective covalent inhibitor of G9a/GLP via the structure-based drug design approach following structure-activity relationship exploration and cellular potency optimization. Mass spectrometry assays and washout experiments confirmed its covalent inhibition mechanism. Compound displayed improved potency in inhibiting the proliferation and colony formation of PANC-1 and MDA-MB-231 cell lines and exhibited enhanced potency in reducing the levels of H3K9me2 in cells compared to noncovalent inhibitor . , showed significant antitumor efficacy in the PANC-1 xenograft model with good safety. These results clearly indicate that is a highly potent and selective covalent inhibitor of G9a/GLP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.3c00411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!