A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene co-expression network and differential expression analyses of subcutaneous white adipose tissue reveal novel insights into the pathological mechanisms underlying ketosis in dairy cows. | LitMetric

AI Article Synopsis

  • Ketosis is a metabolic condition common in dairy cows during the perinatal period, characterized by high levels of ketone bodies in the blood, with the exact molecular mechanisms still unclear.
  • This study analyzed subcutaneous white adipose tissue in Holstein cows with and without type II ketosis, finding significant differences in serum markers and gene expression related to fat mobilization and liver health.
  • A key gene, NTRK2, was identified as crucial in understanding ketosis, suggesting that impaired brain signaling may be linked to abnormal fat metabolism in affected cows.

Article Abstract

Ketosis is a common nutritional metabolic disease during the perinatal period in dairy cows. Although various risk factors have been identified, the molecular mechanism underlying ketosis remains elusive. In this study, subcutaneous white adipose tissue (sWAT) was biopsied for transcriptome sequencing on 10 Holstein cows with type II ketosis [blood β-hydroxybutyric acid (BHB) >1.4 mmol/L; Ket group] and another 10 cows without type II ketosis (BHB ≤1.4 mmol/L; Nket group) at d 10 after calving. Serum concentrations of nonesterified fatty acids (NEFA) and BHB, as indicators of excessive fat mobilization and circulating ketone bodies, respectively, were significantly higher in the Ket group than in the Nket group. Aspartate transaminase (AST) and total bilirubin (TBIL), as indicators of liver damage, were higher in the Ket group than in the Nket group. Weighted gene co-expression network analysis (WGCNA) of the sWAT transcriptome revealed modules significantly correlated with serum BHB, NEFA, AST, TBIL, and total cholesterol. The genes in these modules were enriched in the regulation of the lipid biosynthesis process. Neurotrophic tyrosine kinase receptor type 2 (NTRK2) was identified as the key hub gene by intramodular connectivity, gene significance, and module membership. Quantitative reverse transcription PCR analyses for these samples, as well as a set of independent samples, validated the downregulation of NTRK2 expression in the sWAT of dairy cows with type II ketosis. NTRK2 encodes tyrosine protein kinase receptor B (TrkB), which is a high-affinity receptor for brain-derived neurotrophic factor, suggesting that abnormal lipid mobilization in cows with type II ketosis might be associated with impaired central nervous system regulation of adipose tissue metabolism, providing a novel insight into the pathogenesis underlying type II ketosis in dairy cows.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2022-22941DOI Listing

Publication Analysis

Top Keywords

type ketosis
20
dairy cows
16
cows type
16
adipose tissue
12
nket group
12
gene co-expression
8
co-expression network
8
subcutaneous white
8
white adipose
8
ketosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!