Peptide sequencing is of great significance to fundamental and applied research in the fields such as chemical, biological, medicinal and pharmaceutical sciences. With the rapid development of mass spectrometry and sequencing algorithms, de-novo peptide sequencing using tandem mass spectrometry (MS/MS) has become the main method for determining amino acid sequences of novel and unknown peptides. Advanced algorithms allow the amino acid sequence information to be accurately obtained from MS/MS spectra in short time. In this review, algorithms from exhaustive search to the state-of-art machine learning and neural network for high-throughput and automated de-novo sequencing are introduced and compared. Impacts of datasets on algorithm performance are highlighted. The current limitations and promising direction of de-novo peptide sequencing are also discussed in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341330 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!