Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway.

J Ethnopharmacol

Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China. Electronic address:

Published: October 2023

Ethnopharmacological Relevance: Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear.

Aim Of The Study: To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH.

Materials And Methods: The study established an HT22 cell model exposed to IH (0.1% O 3 min/21% O 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3.

Results: The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions.

Conclusion: The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.116677DOI Listing

Publication Analysis

Top Keywords

tan iia
32
intermittent hypoxia
12
neuronal injury
12
oxidative stress
12
iia
9
tanshinone iia
8
tan
8
mechanism tan
8
iia treatment
8
injury ht22 cells
8

Similar Publications

Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms.

Pharmaceutics

January 2025

State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.

Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. : To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility.

View Article and Find Full Text PDF

Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.

View Article and Find Full Text PDF

[Retracted] Tan IIA inhibits H1299 cell viability through the MDM4‑IAP3 signaling pathway.

Mol Med Rep

March 2025

Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.

Following the publication of the above paper, it was drawn to the Editors' attention by a concerned reader that certain of the western blotting data shown in Fig. 1C and D on p. 2386 were strikingly similar to data appearing in different form in a pair of other articles written by different authors at a different research institute that had already been published elsewhere prior to the submission of this paper to .

View Article and Find Full Text PDF

Membranes have been used as versatile tools for the separation of various natural products; however, the selective separation of structural analogs of natural products using membranes remains challenging. In this study, biocomposite membranes based on poly(ionic liquids) and different natural fibers (jute, cotton, or wool) were successfully prepared. Natural fibers can regulate the microstructure and improve the mechanical properties of membranes.

View Article and Find Full Text PDF

Effects of Dietary Gallic Acid on Growth Performance, Meat Quality, Antioxidant Capacity, and Muscle Fiber Type-Related Gene Expression in Broiler Chickens Challenged with Lipopolysaccharide.

Animals (Basel)

December 2024

Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.

In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!