Assessment of halophyte plant phenotypic responses under heavy metals pollution. Implications for monitoring and phytoremediation.

Environ Pollut

Universidad Nacional de La Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD, Puerto Madryn, Chubut, Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina. Electronic address:

Published: August 2023

While phytoremediation is a highly valued practice to address local pollution problems, the use of early biomarkers of stress is useful for monitoring environments since they allow us to take measures before deleterious effects are irreversible. In this framework the goals are: to evaluate the pattern of leaf shape variation of Limonium brasiliense plants related to a metal soil gradient in the San Antonio salt marsh; to assess whether seeds from sites with different pollution levels show the same pattern of leaf shape variations under optimal growing conditions; and to compare the growth, the Pb accumulation pattern, and the leaf shape variation pattern of plants germinated from seeds originated in sites with different pollution levels in response to an experimental Pb rise. The results obtained from leaves collected in the field showed that the leaf shape changed depending on the soil metal levels. Plants germinated from seeds collected at the different sites expressed all the variation in leaf shape independently of the origin site, and the mean shape of each site was close to the consensus. Instead, when looking for the leaf shape components that maximize the differences between the sites from a growth experiment exposed to an increase in Pb in the irrigation solution, the pattern of variation found in the field disappeared. That is, only plants from the polluted site did not show variations in leaf shape in response to Pb additions. Finally, Pb accumulation in the roots was highest in plants germinated from seeds from the site where the soil pollution is greater. That suggests that seeds of L. brasiliense from polluted sites are better to use in phytoremediation practices, specifically to stabilize Pb in its roots whilst plants from the non-polluted site are better to detect pollutant soils using the leaf shape as an early biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.121916DOI Listing

Publication Analysis

Top Keywords

leaf shape
32
pattern leaf
12
plants germinated
12
germinated seeds
12
shape
9
leaf
8
shape variation
8
sites pollution
8
pollution levels
8
plants
6

Similar Publications

Micro(nano)plastics (MNPs), widely distributed in the environment, can be ingested and accumulated by various organisms. Recently, the transgenerational transport of MNPs from parental organisms to their offspring has attracted increasing attention. In this review, we summarize the patterns, specific pathways, and related mechanisms of intergenerational transfer of MNPs in plants, non-mammals (zooplankton and fish) and mammals.

View Article and Find Full Text PDF

Anatomical characterization of Semi-arid Bignoniaceae using light and scanning electron microscopy.

BMC Plant Biol

January 2025

Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.

Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.

Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.

View Article and Find Full Text PDF

(Acoraceae) is a commonly used seasoning in southern China. It was previously misidentified as (Yamam.) F.

View Article and Find Full Text PDF

A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.

View Article and Find Full Text PDF

Leaf shape is an important determinant of photosynthesis, yield and quality in plants. In this study, we obtained a curled leaf mutant, , from an ethyl methanesulfonate (EMS)-induced mutagenesis population. It was designated the locus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!