In this work, a quantitative sandwich ELISA was optimized, through a full factorial design of experiments (DOE) in successive steps of a preliminary protocol obtained by the method of one factor at a time (OFAT). The specificity of the optimized ELISA, the lower limit of quantification, the quantification range and the analytical sensitivity of the antigen quantification curve were evaluated, in comparison with the curve obtained from the preliminary protocol. The full factorial DOE was linked to a simple statistical processing, which facilitates the interpretation of the results in those laboratories where there is no trained statistician. The step-by-step optimization of the ELISA and the successive incorporation into the protocol of the best combination of factors and levels, allowed obtaining a specific immunoassay, with an analytical sensitivity 20 times greater and with a lower limit of antigen quantification that decreased from 156.25 at 9.766 ng/mL. As far as we know, there are no reports of optimization of an ELISA following the step-by-step scheme used in this work. The optimized ELISA will be used for the quantification of the TT-P0 protein, the active principle of a vaccine candidate against sea lice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2023.115195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!