Quorum sensing (QS) is the ability of bacteria to monitor their population density and adjust gene expression accordingly. QS-regulated processes include host-microbe interactions, horizontal gene transfer, and multicellular behaviours (such as the growth and development of biofilm). The creation, transfer, and perception of bacterial chemicals known as autoinducers or QS signals are necessary for QS signalling (e.g. N-acylhomoserine lactones). Quorum quenching (QQ), another name for the disruption of QS signalling, comprises a wide range of events and mechanisms that are described and analysed in this study. In order to better comprehend the targets of the QQ phenomena that organisms have naturally developed and are currently being actively researched from practical perspectives, we first surveyed the diversity of QS-signals and QS-associated responses. Next, the mechanisms, molecular players, and targets related to QS interference are discussed, with a focus on natural QQ enzymes and compounds that function as QS inhibitors. To illustrate the processes and biological functions of QS inhibition in microbe-microbe and host-microbe interactions, a few QQ paradigms are described in detail. Finally, certain QQ techniques are offered as potential instruments in a variety of industries, including agriculture, medical, aquaculture, crop production, and anti-biofouling areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2023.104085DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
host-microbe interactions
8
quenching quorum
4
sensing bacterial
4
bacterial bio-films
4
bio-films quorum
4
sensing ability
4
ability bacteria
4
bacteria monitor
4
monitor population
4

Similar Publications

Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly.

Braz J Microbiol

December 2024

Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.

Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions.

View Article and Find Full Text PDF

Quorum quenching effects of linoleic and stearic acids on outer membrane vesicle-mediated virulence in .

Biofouling

December 2024

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, India.

is a pathogenic bacterium that can infect humans and animals, yet the role of its outer membrane vesicles (OMVs) in mediating pathogenicity remains underexplored. This study evaluated the effects of linoleic acid (LA) and stearic acid (SA) on quorum sensing (QS)-mediated violacein production, biofilm formation, and OMV biogenesis in . Our findings revealed that 2 mM LA and 1 mM SA effectively quench QS, leading to a significant reduction in violacein production, biofilm formation, and OMV biogenesis.

View Article and Find Full Text PDF

Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from - namely, the competence and sporulation factor (CSF) and (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast .

View Article and Find Full Text PDF

Role of bacterial quorum sensing in plant growth promotion.

World J Microbiol Biotechnol

December 2024

Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.

Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for the removal of biological nitrogen from ammonium-rich wastewater. However, the susceptibility of anammox bacteria to coexisting heavy metals considerably restricts their use in engineering practices. Here, we report that acyl-homoserine lactone (AHL), a signaling molecule that mediates quorum sensing (QS), significantly enhances the nitrogen removal rate by 24% under Cu stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!