Orofacial pain (OFP) is a clinically very common and the most troubling condition; however, there is few effective way to relieve OFP. Rab11a, a small molecule guanosine triphosphate enzyme, is one of the Rab member family playing a vital role in intracellular endocytosis and the pain process. Therefore, we investigated the hub genes of rat OFP model induced by Complete Freund's Adjuvant (CFA) via re-analyzing microarray data (GSE111160). We found that Rab11a acted as a key hub gene in the process of OFP. During the validation of Rab11a, the OFP model was established by peripheral injection of CFA, which decreased the head withdrawal threshold (HWT) and head withdrawal lantency (HWL). Rab11a was observed in NeuN of Sp5C instead of GFAP/IBA-1, and double-IF of Rab11a and Fos positive cells were increased on the 7th day after CFA modeling statistically. Rab11a protein expression in TG and Sp5C of CFA group was also significantly increased. Interestingly, injection of Rab11a-targeted short hairpin RNA (Rab11a-shRNA) into Sp5C could reverse the decrease in HWT and HWL and reduce the expression level of Rab11a. Electrophysiological recording further demonstrated that the activity of Sp5C neuron was improved in CFA group, while Rab11a-shRNA considerably decreased the enhancement of Sp5C neuronal activity. Finally, we detected the expression level of p-PI3K, p-AKT, and p-mTOR in Sp5C of rats after injecting the Rab11a-shRNA virus. To our surprise, CFA upregulated the phosphorylation of PI3K, AKT and mTOR in Sp5C, and Rab11a-shRNA downregulated these molecules' expression. Our data suggest that CFA activates the PI3K/AKT signaling pathway through up-regulating Rab11a expression, which can induce OFP hyperalgesia development furtherly. Targeting Rab11a may be a novel treatment strategy for OFP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2023.105550DOI Listing

Publication Analysis

Top Keywords

rab11a
10
validation rab11a
8
model induced
8
cfa
8
ofp model
8
head withdrawal
8
cfa group
8
expression level
8
ofp
7
sp5c
7

Similar Publications

The potential role of vesicle transport-related small GTPases rabs in abiotic stress responses.

Plant Physiol Biochem

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:

Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.

View Article and Find Full Text PDF

Introduction: Autophagy related genes (ARGs) may play important roles in various biological processes involving kidney transplantation (KT); however, their expression characteristics are rarely used to study the relationship between autophagy and prognosis in KT patients. This study aims to construct a new autophagy related gene feature based on high-throughput sequencing datasets.

Methods: Differentially expressed ARGs (DEARGs) were identified in KT patients based on the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

The GPER is an important factor through which somatic cells regulate oocyte maternal mRNA translation and developmental competence.

Int J Biol Macromol

December 2024

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China. Electronic address:

The G protein-coupled estrogen receptor (GPER) plays a crucial role in various biological processes, but its regulation of oocyte meiosis remains unclear. In this study, we generated a Gper1 knockout in growing oocytes using Zp3-Cre, revealing that GPER is essential for oocyte maturation and embryo development. RNA-seq analysis indicated that GPER deficiency significantly altered the oocyte transcriptome and disrupted mRNA translation.

View Article and Find Full Text PDF

Manganese Exposure Enhances the Release of Misfolded α-Synuclein via Exosomes by Impairing Endosomal Trafficking and Protein Degradation Mechanisms.

Int J Mol Sci

November 2024

Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.

Excessive exposure to manganese (Mn) increases the risk of chronic neurological diseases, including Parkinson's disease (PD) and other related Parkinsonisms. Aggregated α-synuclein (αSyn), a hallmark of PD, can spread to neighboring cells by exosomal release from neurons. We previously discovered that Mn enhances its spread, triggering neuroinflammatory and neurodegenerative processes.

View Article and Find Full Text PDF

Novel TBC1D8B variant causes neonatal nephrotic syndrome combined with acute kidney injury.

Ital J Pediatr

October 2024

Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Children's Medical Center of Anhui Medical University, No. 39, Wangjiang Road, Hefei, 230051, Anhui, China.

Background: Nephrotic syndrome (NPHS), characterized by proteinuria, hypoalbuminemia, and edema, can be caused by genetic variations. TBC1D8B was recently discovered as a novel disease-causing gene for X-linked NPHS. With only a few reported cases, the clinical manifestations associated with variants of this gene need to be further examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!