Simple and cheap CRISPR/Cas12a biosensor based on plug-and-play of DNA aptamers for the detection of endocrine-disrupting compounds.

Talanta

State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China.

Published: October 2023

Endocrine-disrupting compounds (EDCs) are widely distributed in the environment. Here, we present a CRISPR/Cas12a (CAS) biosensor based on DNA aptamers for point-of-care detection of EDCs. Two typical EDCs, 17β-estradiol (E2) and bisphenol A (BPA), were selected to be detected by the CAS biosensors via the plug-and-play of their DNA aptamers. The results indicated that the performance of the CAS biosensors can be well regulated by controlling the trans-cleavage activity of Cas12a on a single-stranded DNA reporter and optimizing the sequence and ratio of DNA aptamer and activator DNA. Ultimately, two reliable and specific biosensors were developed, with the linear range and limit of detection of 0.2-25 nM and 0.08 nM for E2 and of 0.1-250 nM and 0.06 nM for BPA, respectively. Compared to the existing detection methods, the CAS biosensors showed higher reliability and sensitivity with simple operation, short detection time, and no costly equipment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.124761DOI Listing

Publication Analysis

Top Keywords

dna aptamers
12
cas biosensors
12
biosensor based
8
plug-and-play dna
8
endocrine-disrupting compounds
8
dna
6
detection
5
simple cheap
4
cheap crispr/cas12a
4
crispr/cas12a biosensor
4

Similar Publications

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Near-infrared fluorogenic RNA for in vivo imaging and sensing.

Nat Commun

January 2025

Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.

Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.

View Article and Find Full Text PDF

DNA Aptamer-Polymer Conjugates for Selective Targeting of Integrin α4β1 T-Lineage Cancers.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.

Selective therapeutic targeting of T-cell malignancies is difficult due to the shared lineage between healthy and malignant T cells. Current front-line chemotherapy for these cancers is largely nonspecific, resulting in frequent cases of relapsed/refractory disease. The development of targeting approaches for effectively treating T-cell leukemia and lymphoma thus remains a critical goal for the oncology field.

View Article and Find Full Text PDF

A simply synthesized, silver ions-doped porous gold microparticles-based SERS aptamer sensor for ultrasensitive and broad-range quantitative detection of IL-6.

Anal Chim Acta

January 2025

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.

Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

DNAzyme assisted single amplification for FEN1 activity detection using a personal glucose meter.

Anal Chim Acta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:

Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!