Endocrine-disrupting compounds (EDCs) are widely distributed in the environment. Here, we present a CRISPR/Cas12a (CAS) biosensor based on DNA aptamers for point-of-care detection of EDCs. Two typical EDCs, 17β-estradiol (E2) and bisphenol A (BPA), were selected to be detected by the CAS biosensors via the plug-and-play of their DNA aptamers. The results indicated that the performance of the CAS biosensors can be well regulated by controlling the trans-cleavage activity of Cas12a on a single-stranded DNA reporter and optimizing the sequence and ratio of DNA aptamer and activator DNA. Ultimately, two reliable and specific biosensors were developed, with the linear range and limit of detection of 0.2-25 nM and 0.08 nM for E2 and of 0.1-250 nM and 0.06 nM for BPA, respectively. Compared to the existing detection methods, the CAS biosensors showed higher reliability and sensitivity with simple operation, short detection time, and no costly equipment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124761 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFNat Commun
January 2025
Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.
Selective therapeutic targeting of T-cell malignancies is difficult due to the shared lineage between healthy and malignant T cells. Current front-line chemotherapy for these cancers is largely nonspecific, resulting in frequent cases of relapsed/refractory disease. The development of targeting approaches for effectively treating T-cell leukemia and lymphoma thus remains a critical goal for the oncology field.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:
Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.
Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.
Anal Chim Acta
January 2025
MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China. Electronic address:
Flap endonuclease 1 (FEN1) plays a vital role in cancer by modulating DNA repair mechanisms, inducing genomic instability, and serving as a promising biomarker for cancer diagnosis and prognosis. In this work, we present the development of a novel DNAzyme signal amplification-directed point-of-care sensing system (Dz-PGM) for the sensitive and specific detection of FEN1. The Dz-PGM system utilizes DNAzyme signal amplification in conjunction with a personal glucose meter (PGM) for reporting, capitalizing on a biochemical cascade initiated by FEN1 recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!