Yeast biofilms on abiotic surfaces: Adhesion factors and control methods.

Int J Food Microbiol

Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Rua Monteiro Lobato n° 80, Campinas, São Paulo 13083-862, Brazil. Electronic address:

Published: September 2023

Biofilms are highly resistant to antimicrobials and are a common problem in many industries, including pharmaceutical, food and beverage. Yeast biofilms can be formed by various yeast species, including Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans. Yeast biofilm formation is a complex process that involves several stages, including reversible adhesion, followed by irreversible adhesion, colonization, exopolysaccharide matrix formation, maturation and dispersion. Intercellular communication in yeast biofilms (quorum-sensing mechanism), environmental factors (pH, temperature, composition of the culture medium), and physicochemical factors (hydrophobicity, Lifshitz-van der Waals and Lewis acid-base properties, and electrostatic interactions) are essential to the adhesion process. Studies on the adhesion of yeast to abiotic surfaces such as stainless steel, wood, plastic polymers, and glass are still scarce, representing a gap in the field. The biofilm control formation can be a challenging task for food industry. However, some strategies can help to reduce biofilm formation, such as good hygiene practices, including regular cleaning and disinfection of surfaces. The use of antimicrobials and alternative methods to remove the yeast biofilms may also be helpful to ensure food safety. Furthermore, physical control measures such as biosensors and advanced identification techniques are promising for yeast biofilms control. However, there is a gap in understanding why some yeast strains are more tolerant or resistant to sanitization methods. A better understanding of tolerance and resistance mechanisms can help researchers and industry professionals to develop more effective and targeted sanitization strategies to prevent bacterial contamination and ensure product quality. This review aimed to identify the most important information about yeast biofilms in the food industry, followed by the removal of these biofilms by antimicrobial agents. In addition, the review summarizes the alternative sanitizing methods and future perspectives for controlling yeast biofilm formation by biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2023.110265DOI Listing

Publication Analysis

Top Keywords

yeast biofilms
24
biofilm formation
12
yeast
11
abiotic surfaces
8
yeast biofilm
8
food industry
8
biofilms
7
adhesion
5
formation
5
biofilms abiotic
4

Similar Publications

Background: Candidiasis can be present as a cutaneous, mucosal, or deep-seated organ infection, which is caused by more than 20 types of Candida spp., with C. albicans being the most common.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the relationship between skin oxylipins, which are bioactive lipids produced from fatty acids by skin microbes, and different microbial communities on the skin of children and adults.
  • Findings highlighted that Malassezia restricta, a type of skin fungus, has a positive impact on the production of a specific oxylipin (9,10-DiHOME) in adults, while showing a negative correlation with its precursor in children, indicating differences in skin chemistry across age groups.
  • The research suggests a complex communication system between skin microbes and host lipid metabolism that could have implications for skin health, emphasizing the need for further exploration of these interactions for potential therapeutic applications.
View Article and Find Full Text PDF

Modification of Cells with Metal Hexacyanoferrates for the Construction of a Yeast-Based Fuel Cell.

Molecules

January 2025

Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.

This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.

View Article and Find Full Text PDF

Peri-implantitis associated with dental implants shares characteristics with destructive periodontal diseases. Both conditions are multifactorial and strongly correlated with the presence of microorganisms surrounding the prostheses or natural dentition. This study aimed to evaluate the antimicrobial activity and toxicity of a mucoadhesive hydrogel functionalized with aminochalcone (HAM-15) against Aggregatibacter actinomycetemcomitans, Fusobacterium periodonticum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Candida albicans.

View Article and Find Full Text PDF

Surface Modifications and Antifungal Efficacy of Origanum Oil Incorporation in Denture-based Materials: An Study.

J Contemp Dent Pract

September 2024

Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Dentistry, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, ORCID: https://orcid.org/0000-0002-5166-8233.

Aim: This study aimed to assess if the addition of origanum oil to denture materials could decrease microorganisms counts and biofilm formation without changing their mechanical/surface properties.

Materials And Methods: A total of 66 resilient denture liner discs (SoftConfort, Dencril Comércio de Plásticos Ltda, SP, Brazil) were prepared with fixed dimensions of 10 × 3 mm for biofilm assay ( = 36) and 12 × 2 mm for sorption-solubility tests ( = 30) containing three oil concentrations - 0, 2.5 and 5%, thereby = 12 per each group samples for biofilm assay and = 10 per each group for sorption-solubility test respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!