Antibiotic resistance genes (ARGs) and antibiotic amount increased within close proximity to human dominated ecosystems. However, few studies assessed the distribution of antibiotics and ARGs in multiple ecosystems especially the different urban wastewater. In this study, the spatial distribution of ARGs and antibiotics across the urban wastewater included domestic, livestock, hospital, pharmaceutical wastewater, influent of the wastewater treatment plant (WWTP) in Northeast China. The q-PCR results showed that ARGs were most abundant in community wastewater and followed by WWTP influent, livestock wastewater, pharmaceutical wastewater and hospital wastewater. The ARG composition differed among the five ecotypes with qnrS was the dominant ARG subtypes in WWTP influent and community wastewater, while sul2 dominant in livestock, hospital, pharmaceutical wastewater. The concentration of antibiotics was closely related to the antibiotic usage and consumption data. In addition to the high concentration of azithromycin at all sampling points, more than half of the antibiotics in livestock wastewater were veterinary antibiotics. However, antibiotics that closely related to humankind such as roxithromycin and sulfamethoxazole accounted for a higher proportion in hospital wastewater (13.6%) and domestic sewage (33.6%), respectively. The ambiguous correlation between ARGs and their corresponding antibiotics was detected. However, antibiotics that exhibited high ecotoxic effects were closely and positively correlated with ARGs and the class 1 integrons (intI1), which indicated that high ecotoxic compounds might affect antimicrobial resistance of bacteria by mediating horizontal gene transfer of ARGs. The coupling mechanism between the ecological risk of antibiotics and bacterial resistance needed to be further studied, and thereby provided a new insight to study the impact of environmental pollutants on ARGs in various ecotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118296 | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.
Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Chemical Engineering and Pilot Plant Department, Engineering & Renewable Energy Research Institute, National Research Centre (NRC), Giza, 12622, Egypt.
Humans have contaminated water supplies with harmful compounds, including different heavy metals. Heavy metals can interfere with human and animal vital organs and metabolic processes. They are also persistent and bioaccumulative.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco. Electronic address:
This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran. Electronic address:
The wastewater from various industries contaminated with heavy metals poses significant environmental challenges. Biosorption has emerged as a widely used method for removing heavy metals from industrial wastewater. Pseudomonas atacamensis M7D1 is known to produce polysaccharides, but the potential of its polysaccharides as an adsorbent for heavy metal removal still needs to be explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!