Ballistics (the linkage of bullets and cartridge cases to weapons) is a common type of evidence encountered in criminal cases around the world. The interest lies in determining whether two bullets were fired using the same firearm. This paper proposes an automated method to classify bullets from surface topography and Land Engraved Area (LEA) images of the fired pellets using machine and deep learning methods. The curvature of the surface topography was removed using loess fit and features were extracted using Empirical Mode Decomposition (EMD) followed by various entropy measures. The informative features were identified using minimum Redundancy Maximum Relevance (mRMR), finally the classification was performed using Support Vector Machines (SVM), Decision Tree (DT) and Random Forest (RF) classifiers. The results revealed a good predictive performance. In addition, the deep learning model DenseNet121 was used to classify the LEA images. DenseNet121 provided a higher predictive performance than SVM, DT and RF classifiers. Moreover, the Grad-CAM technique was used to visualise the discriminative regions in the LEA images. These results suggest that the proposed deep learning method can be used to expedite the linkage of projectiles to firearms and assist in ballistic examinations. In this work, the bullets that were compared were air pellets fired from both air rifles and a high velocity air pistol. Air guns were used to collect the data because they were more accessible than other firearms and could be used as a proxy, delivering comparable LEAs. The methods developed here can be used as a proof-of-concept and are easily expandable to bullet and cartridge case identification from any weapon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2023.111734 | DOI Listing |
MAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Department of Otorhinolaryngology, Institute of Science Tokyo, Tokyo, Japan.
Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.
Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.
Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.
Clin Transl Sci
January 2025
Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.
The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.
View Article and Find Full Text PDFSmall Methods
January 2025
Dept. Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!