A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electroactive molecularly imprinted polymer nanoparticles for selective glyphosate determination. | LitMetric

AI Article Synopsis

  • Researchers developed redox-active molecularly imprinted polymer nanoparticles (MIP-Gly NPs) specifically designed to selectively detect glyphosate (Gly) without needing additional redox probes.
  • These nanoparticles were synthesized with ferrocenyl components, allowing them to be electroactive and provide a straightforward detection mechanism.
  • Testing showed that MIP-Gly NPs could effectively measure glyphosate in spiked river water, with high sensitivity (limit of detection at 3.7 pM) and a linear concentration range from 25 pM to 500 pM.

Article Abstract

Redox-active molecularly imprinted polymer nanoparticles selective for glyphosate, MIP-Gly NPs, were devised, synthesized, and subsequently integrated onto platinum screen-printed electrodes (Pt-SPEs) to fabricate a chemosensor for selective determination of glyphosate (Gly) without the need for redox probe in the test solution. That was because, ferrocenylmethyl methacrylate was added to the polymerization mixtures during the NPs synthesis so that the resulting MIP-Gly NPs contained covalently immobilized ferrocenyl moieties as the reporting redox ingredient, conferring these NPs with electroactive properties. MIP-Gly NPs of four different compositions were evaluated. The herein described approach represents a simple and effective way to endow MIP NPs with electrochemical reporting capabilities with neither the need to functionalize them post-synthesis nor to use electrochemical mediators present in the tested solution during the analyte determinations. MIP-Gly NPs synthesized using allylamine and squaramide-based monomers appeared most selective to Gly. The Pt-SPEs modified with MIP-Gly NPs were characterized with differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Changes in the DPV peak originating from the oxidation of the ferrocenyl moieties in these MIP-Gly NPs served as the analytical signal. The DPV limit of detection and the linear dynamic concentration range for Gly were 3.7 pM and 25 pM-500 pM, respectively. Moreover, the selectivity of the fabricated chemosensors was sufficiently high to determine Gly successfully in spiked river water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115381DOI Listing

Publication Analysis

Top Keywords

mip-gly nps
24
nps
9
molecularly imprinted
8
imprinted polymer
8
polymer nanoparticles
8
nanoparticles selective
8
selective glyphosate
8
ferrocenyl moieties
8
mip-gly
6
electroactive molecularly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!