Background: Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility.

Methods: The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum.

Results: Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1β/CXCL10 cytokines was confirmed in all models in a relatively similar pattern.

Conclusion: For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2023.156235DOI Listing

Publication Analysis

Top Keywords

mutual genes
12
experimental models
8
models multiple
8
multiple sclerosis
8
targeted therapies
8
animal models
8
models
7
mutual
6
genes
6
tnf-α/stat1/cxcl10 mutual
4

Similar Publications

Progress in biology has generated numerous lists of genes that share some property. But advancing from these lists of genes to understanding their roles is slow and unsystematic. Here we use RNA silencing in Caenorhabditis elegans to illustrate an approach for prioritizing genes for detailed study given limited resources.

View Article and Find Full Text PDF

Metagenomic Analysis Revealing the Impact of Water Contents on the Composition of Soil Microbial Communities and the Distribution of Major Ecological Functional Genes in Poyang Lake Wetland Soil.

Microorganisms

December 2024

Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.

Poyang Lake is the largest freshwater lake in China, which boasts unique hydrological conditions and rich biodiversity. In this study, metagenomics technology was used to sequence the microbial genome of soil samples S1 (sedimentary), S2 (semi-submerged), and S3 (arid) with different water content from the Poyang Lake wetland; the results indicate that the three samples have different physicochemical characteristics and their microbial community structure and functional gene distribution are also different, resulting in separate ecological functions. The abundance of typical ANME archaea and the high abundance of in S1 mutually demonstrate prominent roles in the methane anaerobic oxidation pathway during the methane cycle.

View Article and Find Full Text PDF

Background: In the realm of system biology, it is a challenging endeavor to infer a gene regulatory network from time-series gene expression data. Numerous Boolean network inference techniques have emerged for reconstructing a gene regulatory network from a time-series gene expression dataset. However, most of these techniques pose scalability concerns given their capability to consider only two to three regulatory genes over a specific target gene.

View Article and Find Full Text PDF

Thanks to the identification of crucial molecular pathways, the therapeutic landscape for advanced differentiated thyroid tumors (DTCs) has significantly improved during the last ten years. The therapeutic scenario has been greatly impacted by the discovery of mutually exclusive gene changes in the MAPK and PI3K/AKT pathways, such as or fusions and pathogenic mutations of the and genes. Indeed, multi-kinase inhibitors and selective inhibitors have demonstrated outstanding efficacy for radioactive iodine-refractory (RAI-R) drug treatment, with overall response rates reaching up to 86%.

View Article and Find Full Text PDF

Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!