The energetic content of the compounds MgTp, FeTp, MnTp, and TiTp is measured by bomb calorimetry and compared to theoretical calculations (Tp = trispyrazoylborate). TiTp had the largest heat of combustion of the four compounds. Comparison of the heat of combustion of the Ti complex to those of Mg and Mn complexes suggests an effective combustion energy of Ti of between 1400 and 3000 kJ/mol, affirming the role of Ti as a strong fuel atom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c04367 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, 5625 Renmin Street, 130022, Changchun, CHINA.
Single-atom catalysts (SACs) with high metal loadings are highly desirable but still challenging for large scale synthesis. Here we report a new technique named as dry-solid-electrochemical synthesis (DSES) for a general large-scale synthesis of SACs with high metal loadings in an energy-conservation and environment-friendly way. With it, a series of pure carbon-supported metal SACs (Platinum up to 35.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.
View Article and Find Full Text PDFLangmuir
January 2025
School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
The evolution of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts that are highly active, stable, and conductive is crucial for advancing metal-air batteries and fuel cells. We have here thoroughly explored the OER and ORR performance for a category of two-dimensional (2D) metal-organic frameworks (MOFs) called TM(HADQ), and Rh(HADQ) exhibits a promising bifunctional OER/ORR activity, with an overpotential of 0.31 V for both OER and ORR.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!