We propose a linear optical quantum computation scheme using time-frequency degrees of freedom. In this scheme, a qubit is encoded in single-photon frequency combs, and manipulation of the qubits is performed using time-resolving detectors, beam splitters, and optical interleavers. This scheme does not require active devices such as high-speed switches and electro-optic modulators and is robust against temporal and spectral errors, which are mainly caused by the detectors' finite resolution. We show that current technologies almost meet the requirements for fault-tolerant quantum computation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.200602DOI Listing

Publication Analysis

Top Keywords

quantum computation
12
linear optical
8
optical quantum
8
computation frequency-comb
4
frequency-comb qubits
4
qubits passive
4
passive devices
4
devices propose
4
propose linear
4
computation scheme
4

Similar Publications

Identification of promising dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B inhibitors from selected terpenoids through molecular modeling.

Bioinform Adv

December 2024

Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.

Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.

Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.

View Article and Find Full Text PDF

Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator.

View Article and Find Full Text PDF

RL-QPSO net: deep reinforcement learning-enhanced QPSO for efficient mobile robot path planning.

Front Neurorobot

January 2025

Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, China.

Introduction: Path planning in complex and dynamic environments poses a significant challenge in the field of mobile robotics. Traditional path planning methods such as genetic algorithms, Dijkstra's algorithm, and Floyd's algorithm typically rely on deterministic search strategies, which can lead to local optima and lack global search capabilities in dynamic settings. These methods have high computational costs and are not efficient for real-time applications.

View Article and Find Full Text PDF

Scaling and networking a modular photonic quantum computer.

Nature

January 2025

Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.

Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.

View Article and Find Full Text PDF

The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!