We propose a linear optical quantum computation scheme using time-frequency degrees of freedom. In this scheme, a qubit is encoded in single-photon frequency combs, and manipulation of the qubits is performed using time-resolving detectors, beam splitters, and optical interleavers. This scheme does not require active devices such as high-speed switches and electro-optic modulators and is robust against temporal and spectral errors, which are mainly caused by the detectors' finite resolution. We show that current technologies almost meet the requirements for fault-tolerant quantum computation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.200602 | DOI Listing |
Bioinform Adv
December 2024
Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.
Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.
Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.
Nat Phys
December 2024
QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator.
View Article and Find Full Text PDFFront Neurorobot
January 2025
Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, China.
Introduction: Path planning in complex and dynamic environments poses a significant challenge in the field of mobile robotics. Traditional path planning methods such as genetic algorithms, Dijkstra's algorithm, and Floyd's algorithm typically rely on deterministic search strategies, which can lead to local optima and lack global search capabilities in dynamic settings. These methods have high computational costs and are not efficient for real-time applications.
View Article and Find Full Text PDFNature
January 2025
Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.
Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Columbia University, New York, NY, USA.
The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!