Magnetically ordered materials tend to support bands of coherent propagating spin wave, or magnon, excitations. Topologically protected surface states of magnons offer a new path toward coherent spin transport for spintronics applications. In this work we explore the variety of topological magnon band structures and provide insight into how to efficiently identify topological magnon bands in materials. We do this by adapting the topological quantum chemistry approach that has used constraints imposed by time reversal and crystalline symmetries to enumerate a large class of topological electronic bands. We show how to identify physically relevant models of gapped magnon band topology by using so-called decomposable elementary band representations, and in turn discuss how to use symmetry data to infer the presence of exotic symmetry enforced nodal topology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.206702 | DOI Listing |
J Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
In this work, we study topological properties of magnons via creating spin excitations in both ferromagnets (FMs) and antiferromagnets (AFMs) in presence of an external magnetic field on a two-dimensional square lattice. It is known that Dzyaloshinskii-Moriya interaction (DMI) plays an important role in coupling between different particle (spin excitation) sectors, here we consider an anisotropic DMI and ascertain the role of the anisotropy parameter in inducing topological phase transitions. While the scenario, for dealing with FMs, albeit with isotropic DMI is established in literature, we have developed the formalism for studying magnon band topology for the AFM case.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Electro-Medical Equipment Research Division, Applied Electromagnetic Wave Research Center, Korea Electrotechnology Research Institute, Ansan 15588, Republic of Korea.
In this study, we suggest a method to amplify spin waves (SWs) in antiferromagnets (AFMs). By introducing a non-uniform Dzyaloshinskii-Moriya (DM) interaction, the potential barrier forms a resonant cavity. SWs with an opposite chirality undergo scattering and are resonantly amplified at a phase-matching condition.
View Article and Find Full Text PDFNat Commun
August 2024
Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
Nonlinearity of dynamic systems plays a key role in neuromorphic computing, which is expected to reduce the ever-increasing power consumption of machine learning and artificial intelligence applications. For spin waves (magnons), nonlinearity combined with phase coherence is the basis of phenomena like Bose-Einstein condensation, frequency combs, and pattern recognition in neuromorphic computing. Yet, the broadband electrical detection of these phenomena with high-frequency resolution remains a challenge.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2024
Department of Physics, Ashoka University, Sonipat, Haryana 131029, India.
Quasiperiodic magnonic crystals, in contrast to their periodic counterparts, lack strict periodicity which gives rise to complex and localised spin wave spectra characterized by numerous band gaps and fractal features. Despite their intrinsic structural complexity, quasiperiodic nature of these magnonic crystals enables better tunability of spin wave spectra over their periodic counterparts and therefore holds promise for the applications in reprogrammable magnonic devices. In this article, we provide an overview of magnetization reversal and precessional magnetization dynamics studied so far in various quasiperiodic magnonic crystals, illustrating how their quasiperiodic nature gives rise to tailored band structure, enabling unparalleled control over spin waves.
View Article and Find Full Text PDFNat Commun
June 2024
Institute of Physics II, University of Cologne, Zuelpicher Straße 77, Cologne, 50937, Germany.
Understanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!