Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We introduce a wide class of quantum maps that arise in collisional reservoirs and are able to thermalize a system if they operate in conjunction with an additional dephasing mechanism. These maps describe the effect of collisions and induce transitions between populations that obey detailed balance, but also create coherences that prevent the system from thermalizing. We combine these maps with a unitary evolution acting during random Poissonian times between collisions and causing dephasing. We find that, at a low collision rate, the nontrivial combination of these two effects causes thermalization in the system. This scenario is suitable for modeling collisional reservoirs at equilibrium. We justify this claim by identifying the conditions for such maps to arise within a scattering theory approach and provide a thorough characterization of the resulting thermalization process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.200402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!