Purpose: Validation metrics are a key prerequisite for the reliable tracking of scientific progress and for deciding on the potential clinical translation of methods. While recent initiatives aim to develop comprehensive theoretical frameworks for understanding metric-related pitfalls in image analysis problems, there is a lack of experimental evidence on the concrete effects of common and rare pitfalls on specific applications. We address this gap in the literature in the context of colon cancer screening.
Methods: Our contribution is twofold. Firstly, we present the winning solution of the Endoscopy Computer Vision Challenge on colon cancer detection, conducted in conjunction with the IEEE International Symposium on Biomedical Imaging 2022. Secondly, we demonstrate the sensitivity of commonly used metrics to a range of hyperparameters as well as the consequences of poor metric choices.
Results: Based on comprehensive validation studies performed with patient data from six clinical centers, we found all commonly applied object detection metrics to be subject to high inter-center variability. Furthermore, our results clearly demonstrate that the adaptation of standard hyperparameters used in the computer vision community does not generally lead to the clinically most plausible results. Finally, we present localization criteria that correspond well to clinical relevance.
Conclusion: We conclude from our study that (1) performance results in polyp detection are highly sensitive to various design choices, (2) common metric configurations do not reflect the clinical need and rely on suboptimal hyperparameters and (3) comparison of performance across datasets can be largely misleading. Our work could be a first step towards reconsidering common validation strategies in deep learning-based colonoscopy and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329574 | PMC |
http://dx.doi.org/10.1007/s11548-023-02936-9 | DOI Listing |
Int J Surg
January 2025
Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.
View Article and Find Full Text PDFBiofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy.
View Article and Find Full Text PDFBackground: Limited-angle (LA) dual-energy (DE) cone-beam CT (CBCT) is considered as a potential solution to achieve fast and low-dose DE imaging on current CBCT scanners without hardware modification. However, its clinical implementations are hindered by the challenging image reconstruction from LA projections. While optimization-based and deep learning-based methods have been proposed for image reconstruction, their utilization is limited by the requirement for X-ray spectra measurement or paired datasets for model training.
View Article and Find Full Text PDFDrugs must accumulate at their target site to be effective, and inadequate uptake of drugs is a substantial barrier to the design of potent therapies. This is particularly true in the development of antibiotics, as bacteria possess numerous barriers to prevent chemical uptake. Designing compounds that circumvent bacterial barriers and accumulate to high levels in cells could dramatically improve the success rate of antibiotic candidates.
View Article and Find Full Text PDFHumans exhibit unique cognitive abilities within the animal kingdom, but the neural mechanisms driving these advanced capabilities remain poorly understood. Human cortical neurons differ from those of other species, such as rodents, in both their morphological and physiological characteristics. Could the distinct properties of human cortical neurons help explain the superior cognitive capabilities of humans? Understanding this relationship requires a metric to quantify how neuronal properties contribute to the functional complexity of single neurons, yet no such standardized measure currently exists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!