A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantifying physiological stability in the general ward using continuous vital signs monitoring: the circadian kernel density estimator. | LitMetric

Quantifying physiological stability in the general ward using continuous vital signs monitoring: the circadian kernel density estimator.

J Clin Monit Comput

Biomedical Signal Processing & AI Research Group, Digital Health Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345B, 2800 Kgs, Lyngby, Denmark.

Published: December 2023

Technological advances seen in recent years have introduced the possibility of changing the way hospitalized patients are monitored by abolishing the traditional track-and-trigger systems and implementing continuous monitoring using wearable biosensors. However, this new monitoring paradigm raise demand for novel ways of analyzing the data streams in real time. The aim of this study was to design a stability index using kernel density estimation (KDE) fitted to observations of physiological stability incorporating the patients' circadian rhythm. Continuous vital sign data was obtained from two observational studies with 491 postoperative patients and 200 patients with acute exacerbation of chronic obstructive pulmonary disease. We defined physiological stability as the last 24 h prior to discharge. We evaluated the model against periods of eight hours prior to events defined either as severe adverse events (SAE) or as a total score in the early warning score (EWS) protocol of ≥ 6,  ≥ 8, or ≥ 10. The results found good discriminative properties between stable physiology and EWS-events (area under the receiver operating characteristics curve (AUROC): 0.772-0.993), but lower for the SAEs (AUROC: 0.594-0.611). The time of early warning for the EWS events were 2.8-5.5 h and 2.5 h for the SAEs. The results showed that for severe deviations in the vital signs, the circadian KDE model can alert multiple hours prior to deviations being noticed by the staff. Furthermore, the model shows good generalizability to another cohort and could be a simple way of continuously assessing patient deterioration in the general ward.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651555PMC
http://dx.doi.org/10.1007/s10877-023-01032-2DOI Listing

Publication Analysis

Top Keywords

physiological stability
12
general ward
8
continuous vital
8
vital signs
8
kernel density
8
hours prior
8
early warning
8
quantifying physiological
4
stability
4
stability general
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!