Background: The identification of patients at high risk of a disabling disease course would be invaluable in guiding initial therapy in Crohn's disease (CD). Our objective was to evaluate a combination of clinical, serological, and genetic factors to predict complicated disease course in pediatric-onset CD.
Methods: Data for pediatric-onset CD patients, diagnosed before 17 years of age between 1988 and 2004 and followed more than 5 years, were extracted from the population-based EPIMAD registry. The main outcome was defined by the occurrence of complicated behavior (stricturing or penetrating) and/or intestinal resection within the 5 years following diagnosis. Lasso logistic regression models were used to build a predictive model based on clinical data at diagnosis, serological data (ASCA, pANCA, anti-OmpC, anti-Cbir1, anti-Fla2, anti-Flax), and 369 candidate single nucleotide polymorphisms.
Results: In total, 156 children with an inflammatory (B1) disease at diagnosis were included. Among them, 35% (n = 54) progressed to a complicated behavior or an intestinal resection within the 5 years following diagnosis. The best predictive model (PREDICT-EPIMAD) included the location at diagnosis, pANCA, and 6 single nucleotide polymorphisms. This model showed good discrimination and good calibration, with an area under the curve of 0.80 after correction for optimism bias (sensitivity, 79%, specificity, 74%, positive predictive value, 61%, negative predictive value, 87%). Decision curve analysis confirmed the clinical utility of the model.
Conclusions: A combination of clinical, serotypic, and genotypic variables can predict disease progression in this population-based pediatric-onset CD cohort. Independent validation is needed before it can be used in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ibd/izad090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!