Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: The development of acute heart failure (AHF) is a critical decision point in the natural history of the disease and carries a dismal prognosis. The lack of appropriate risk-stratification tools at hospital discharge of AHF patients significantly limits clinical ability to precisely tailor patient-specific therapeutic regimen at this pivotal juncture. Machine learning-based strategies may improve risk stratification by incorporating analysis of high-dimensional patient data with multiple covariates and novel prediction methodologies. In the current study, we aimed at evaluating the drivers for success in prediction models and establishing an institute-tailored artificial Intelligence-based prediction model for real-time decision support.
Methods And Results: We used a cohort of all 10 868 patients AHF patients admitted to a tertiary hospital during a 12 years period. A total of 372 covariates were collected from admission to the end of the hospitalization. We assessed model performance across two axes: (i) type of prediction method and (ii) type and number of covariates. The primary outcome was 1-year survival from hospital discharge. For the model-type axis, we experimented with seven different methods: logistic regression (LR) with either or regularization, random forest (RF), Cox proportional hazards model (Cox), extreme gradient boosting (XGBoost), a deep neural-net (NeuralNet) and an ensemble classifier of all the above methods. We were able to achieve an area under receiver operator curve (AUROC) prediction accuracy of more than 80% with most prediction models including L1/L2-LR (80.4%/80.3%), Cox (80.2%), XGBoost (80.5%), NeuralNet (80.4%). RF was inferior to other methods (78.8%), and the ensemble model was slightly superior (81.2%). The number of covariates was a significant modifier ( < 0.001) of prediction success, the use of multiplex-covariates preformed significantly better (AUROC 80.4% for L1-LR) compared with a set of known clinical covariates (AUROC 77.8%). Demographics followed by lab-tests and administrative data resulted in the largest gain in model performance.
Conclusions: The choice of the predictive modelling method is secondary to the multiplicity and type of covariates for predicting AHF prognosis. The application of a structured data pre-processing combined with the use of multiple-covariates results in an accurate, institute-tailored risk prediction in AHF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232285 | PMC |
http://dx.doi.org/10.1093/ehjdh/ztac054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!