A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multi-stage dynamical fusion network for multimodal emotion recognition. | LitMetric

A multi-stage dynamical fusion network for multimodal emotion recognition.

Cogn Neurodyn

The College of Computer Science, Hangzhou Dianzi University, Hangzhou, China.

Published: June 2023

In recent years, emotion recognition using physiological signals has become a popular research topic. Physiological signal can reflect the real emotional state for individual which is widely applied to emotion recognition. Multimodal signals provide more discriminative information compared with single modal which arose the interest of related researchers. However, current studies on multimodal emotion recognition normally adopt one-stage fusion method which results in the overlook of cross-modal interaction. To solve this problem, we proposed a multi-stage multimodal dynamical fusion network (MSMDFN). Through the MSMDFN, the joint representation based on cross-modal correlation is obtained. Initially, the latent and essential interactions among various features extracted independently from multiple modalities are explored based on specific manner. Subsequently, the multi-stage fusion network is designed to split the fusion procedure into multi-stages using the correlation observed before. This allows us to exploit much more fine-grained unimodal, bimodal and trimodal intercorrelations. For evaluation, the MSMDFN was verified on multimodal benchmark DEAP. The experiments indicate that our method outperforms the related one-stage multi-modal emotion recognition works.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229484PMC
http://dx.doi.org/10.1007/s11571-022-09851-wDOI Listing

Publication Analysis

Top Keywords

emotion recognition
20
fusion network
12
dynamical fusion
8
multimodal emotion
8
fusion
5
multimodal
5
emotion
5
recognition
5
multi-stage dynamical
4
network multimodal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!