Decrease levels of bone morphogenetic protein 6 and noggin in chronic schizophrenia elderly.

Cogn Neurodyn

Department of Geriatric Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People's Republic of China.

Published: June 2023

Objective: Bone morphogenetic protein 6 (BMP6) and noggin both have been implicated in the pathophysiology of chronic dementia, and chronic schizophrenia (SCZ) has high risk for progressing to dementia in later life. The current study investigated the relationship between blood BMP6/noggin levels and cognitive function in chronic SCZ elderly.

Methods: A total of 159 chronic SCZ elderly and 171 community normal controls (NC) were involved in the present study. Blood cytokines including BMP6 and its antagonist-noggin, and cognitive function were measured in all subjects, 157 subjects among them received apolipoprotein E () genotype test, and 208 subjects received cognitive assessment at 1-year follow-up.

Results: Chronic SCZ elderly had decreased levels of blood BMP6 and noggin compared to healthy controls, especially in the subgroup of chronic SCZ with dementia. Blood BMP6 combing with noggin could distinguish chronic SCZ from NC elderly. ε4 carriers had lower levels of BMP6 than non-ε4 carriers under chronic SCZ.

Conclusions: There was a significant relationship of blood BMP6/noggin with cognitive performance in chronic SCZ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229485PMC
http://dx.doi.org/10.1007/s11571-022-09855-6DOI Listing

Publication Analysis

Top Keywords

chronic scz
24
scz elderly
12
chronic
10
bone morphogenetic
8
morphogenetic protein
8
chronic schizophrenia
8
bmp6 noggin
8
relationship blood
8
blood bmp6/noggin
8
cognitive function
8

Similar Publications

Schizophrenia (SCZ) is a chronic psychotic disorder that profoundly alters an individual's perception of reality, resulting in abnormal behavior, cognitive deficits, thought distortions, and disorientation in emotions. Many complicated factors can lead to SCZ, and investigations are ongoing to understand the neurobiological underpinnings of this condition. Presynaptic Netrin G1 and its cognate partner postsynaptic Netrin-G-Ligand-1 (NGL-1) have been implicated in SCZ.

View Article and Find Full Text PDF

The role of ferroptosis and oxidative stress in cognitive deficits among chronic schizophrenia patients: a multicenter investigation.

Schizophrenia (Heidelb)

January 2025

Xinjiang Clinical Medical Research Center of Mental Health, State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.

Oxidative stress (OS) is crucial in schizophrenia (SCZ) pathology. Ferroptosis, a recently discovered cell death pathway linked to OS, might contribute to the development of SCZ. This study investigated the association between ferroptosis markers and cognitive impairments in chronic SCZ patients.

View Article and Find Full Text PDF

Variations of blood D-serine and D-aspartate homeostasis track psychosis stages.

Schizophrenia (Heidelb)

December 2024

CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.

Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage.

View Article and Find Full Text PDF

Predicting psychiatric risk: IgG N-glycosylation traits as biomarkers for mental health.

Front Psychiatry

November 2024

Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Growing evidence suggests that chronic inflammation, resulting from intricate immune system interactions, significantly contributes to the onset of psychiatric disorders. Observational studies have identified a link between immunoglobulin G (IgG) N-glycosylation and various psychiatric conditions, but the causality of these associations remains unclear.

Methods: Genetic variants for IgG N-glycosylation traits and psychiatric disorders were obtained from published genome-wide association studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!