Accurately modeling information diffusion within and across social media platforms has many practical applications, such as estimating the size of the audience exposed to a particular narrative or testing intervention techniques for addressing misinformation. However, it turns out that real data reveal phenomena that pose significant challenges to modeling: events in the physical world affect in varying ways conversations on different social media platforms; coordinated influence campaigns may swing discussions in unexpected directions; a platform's algorithms direct who sees which message, which affects in opaque ways how information spreads. This article describes our research efforts in the SocialSim program of the Defense Advanced Research Projects Agency. As formulated by DARPA, the intent of the SocialSim research program was "to develop innovative technologies for high-fidelity computational simulation of online social behavior ... [focused] specifically on information spread and evolution." In this article we document lessons we learned over the 4+ years of the recently concluded project. Our hope is that an accounting of our experience may prove useful to other researchers should they attempt a related project.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229893PMC
http://dx.doi.org/10.3389/fdata.2023.1135191DOI Listing

Publication Analysis

Top Keywords

social media
12
modeling diffusion
8
diffusion social
8
media platforms
8
socialsim program
8
social
4
media data-driven
4
data-driven observations
4
observations accurately
4
accurately modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!