The nanoscale characterization of thermally activated solid reactions plays a pivotal role in products manufactured by nanotechnology. Recently, observation in transmission electron microscopy combined with electron tomography, namely four-dimensional observation for heat treatment of nanomaterials, has attracted great interest. However, because most nanomaterials are highly reactive, , oxidation during transfer and electron beam irradiation would likely cause fatal artefacts; it is challenging to perform the artifact-free four-dimensional observation. Herein, we demonstrate our development of a novel three-dimensional electron microscopy technique for thermally activated solid-state reaction processes in nanoparticles (NPs). The sintering behaviour of Cu NPs was successfully visualized and analyzed in four-dimensional space-time. An advanced image processing protocol and a newly designed state-of-the-art MEMS-based heating holder enable the implementation of considerably low electron dose imaging and prevent air exposure, which is of central importance in this type of observation. The total amount of electron dose for a single set of tilt-series images was reduced to 250 e nm, which is the lowest level for inorganic materials electron tomography experiments. This study evaluated the sintering behaviour of Cu NPs in terms of variations in neck growth and particle distance. A negative correlation between the two parameters is shown, except for the particle pair bound by neighbouring NPs. The nanoscale characteristic sintering behavior of neck growth was also captured in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr00992kDOI Listing

Publication Analysis

Top Keywords

electron tomography
12
thermally activated
12
electron
8
activated solid
8
electron microscopy
8
four-dimensional observation
8
sintering behaviour
8
behaviour nps
8
electron dose
8
neck growth
8

Similar Publications

Porous nanomaterials find wide-ranging applications in modern medicine, optoelectronics, and catalysis, playing a key role in today's effort to build an electrified, sustainable future. Accurate in situ quantification of their structural and surface properties is required to model their performance and improve their design. In this article, we demonstrate how to assess the porosity, surface area and utilization of a model nanoporous soft-landed copper oxide catalyst layer/carbon interface, which is otherwise difficult to resolve using physisorption or capacitance-based methods.

View Article and Find Full Text PDF

Differentiation of Atherosclerotic Carotid Plaque Components With Dual-Energy Computed Tomography.

Invest Radiol

January 2025

From the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands (M.A., J.B., T.F., A.A.P., M.E.K.); CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (M.A., J.B., M.J.J.G., W.H.M., R.J.v.O., M.E.K.); Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands (M.J.J.G.); Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis & Ischemic Syndrome; Amsterdam Infection and Immunity: Inflammatory Diseases; Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands (M.J.J.G.); Department of Neurology, Zuyderland Medical Center, Heerlen, the Netherlands (T.H.C.M.L.S.); Department of Neurology, Zuyderland Medical Center, Sittard, the Netherlands (N.P.v.O.); Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, the Netherlands (J.-W.H.C.D.); Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands (W.H.M.); Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands (R.J.v.O.); and School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands (A.A.P.).

Objectives: Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.

Materials And Methods: Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI.

View Article and Find Full Text PDF

Aims To evaluate the utility of unenhanced spectral imaging, electron density (ED) and overlay electron density (OED) images for assessing pulmonary embolisms in patients with suspected or confirmed acute pulmonary embolism (APE). Background Multiple spectral images can be extrapolated from spectral detector CT (SDCT), ED and OED images. ED and OED images are highly sensitive to moisture-rich tissues.

View Article and Find Full Text PDF

Fascin structural plasticity mediates flexible actin bundle construction.

Nat Struct Mol Biol

January 2025

Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.

Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales.

View Article and Find Full Text PDF

Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous HO and O. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiO-PEG) can generate reactive oxygen species in an excitation-free and HO- and O-independent manner. Upon exposure to the tumor microenvironment, NaBiO-PEG undergoes continuous H-accelerated hydrolysis with •OH and O generation through electron transfer-mediated Bi-to-Bi conversion and lattice oxygen transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!