Colorectal cancer (CRC) is a widespread type of cancer across the world. One efficient therapy approach is the use of antibiotic agents, but one of the main issues related to treating CRC is microbial resistance to antibiotics. As microbes are becoming more resistant to antibiotics and other traditional antimicrobial agents, nanobiotechnology has made it possible to employ nanomaterials with the aim of creating a new generation of antimicrobial agents. In the present study, we have assessed the antimicrobial potential of CuO nanoparticles (NPs) against gram-negative bacteria like Klebsiella pneumoniae carrying PKS genes responsible for encoding colibactin as the key factor for CRC development. For this purpose, the antibacterial effects of conventional antibacterial agents, including erythromycin, piperacillin, and ampicillin, as well as CuONPs, were compared on isolated strains from cancerous candidates. The obtained results revealed that isolates (K. pneumoniae) showed resistance toward the mentioned conventional antibiotics, but CuONPs showed efficient antibacterial properties against K. pneumonia with a MIC = 62 μg/mL. On the other hand, a synergistic antibacterial effect was obtained when CuONPs were used in combination with conventional antibiotics, which are ineffective when used alone. Therefore, CuONPs can be introduced as an excellent antimicrobial agent against K. pneumoniae bacteria in CRC, especially when they are combined with other antibiotics since they can activate the antimicrobial activity of the conventional antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.2481 | DOI Listing |
Foods
December 2024
Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas (CSIC), Gobierno de La Rioja), 26007 Logroño, Spain.
The objectives of this study were to obtain and characterise polyphenolic extracts from red grape pomace of L. cv Graciano via conventional solvent extraction (SE) and green supercritical fluid extraction (SFE) and to evaluate their antibacterial activity against susceptible and multidrug-resistant strains of intestinal origin. The SE and SFE methods were optimised, and ultra-performance liquid chromatography/mass spectrometry (UPLC/QqQ-MS/MS) analysis revealed 38 phenolic compounds in the SE sample, with anthocyanins being the predominant polyphenols, and 21 phenolic compounds in the SFE samples, among which hydroxybenzoic acids and flavonols were the predominant compounds.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.
Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
Prosthetic joint infections (PJIs) remain a significant challenge, occurring in 1% to 2% of joint arthroplasties and potentially leading to a 20% to 30% mortality rate within 5 years. The primary pathogens responsible for PJIs include Staphylococcus aureus, coagulase-negative staphylococci, and Gram-negative bacteria, typically treated with intravenous antibiotic drugs. However, this conventional approach fails to effectively eradicate biofilms or the microbial burden in affected tissues.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
Multidrug-resistant (MDR) bacteria are becoming more and more common, which presents a serious threat to world health and could eventually render many of the antibiotics we currently use useless. The research and development of innovative antimicrobial tactics that can defeat these hardy infections are imperative in light of this predicament. Antimicrobial peptides (AMPs), which have attracted a lot of attention due to their distinct modes of action and capacity to elude conventional resistance mechanisms, are among the most promising of these tactics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!