Aims: RO7049389 (linvencorvir) is a developmental oral treatment for chronic hepatitis B virus infection. The aim of this work was to conduct mass balance (MB) and absolute bioavailability (BA) analyses in healthy volunteers, alongside in vitro evaluations of the metabolism of RO7049389 and a major circulating active metabolite M5 in human hepatocytes, and physiologically based pharmacokinetic (PBPK) modelling to refine the underlying drug disposition paradigm.
Methods: Participants in the clinical study (MB: Caucasian, male, n = 6; BA: Caucasian and Asian, male and female, n = 16, 8 in each ethnic groups) received oral [ C] or unlabelled RO7049389 (600/1000 mg) followed by 100 μg intravenous [ C]RO7049389. Metabolic pathways with fractions metabolized-obtained from the in vitro incubation results of 10 μM [ C]RO7049389 and 1 μM M5 with (long-term cocultured) human hepatocytes in the absence and presence of the cytochrome P450 3A4 (CYP3A4) inhibitor itraconazole-were used to complement the PBPK models, alongside the clinical MB and BA data.
Results: The model performance in predicting the pharmacokinetic profiles of RO7049389 and M5 aligned with clinical observations in Caucasians and was also successfully applied to Asians. Accordingly, the drug disposition pathways for RO7049389 were postulated with newly characterized estimates of the fractions: biliary excretion by P-glycoprotein (~41%), direct glucuronidation via uridine 5'-diphosphoglucuronosyltransferase 1A3 (~11%), hexose conjugation (~6%), oxidation by CYP3A4 (~28%) and other oxidation reactions (~9%).
Conclusion: These results support the ongoing clinical development program for RO7049389 and highlight the broader value of PBPK and MB analyses in drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bcp.15809 | DOI Listing |
Biochim Biophys Acta Rev Cancer
January 2025
Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:
Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
Multimorbidity, therapeutic complexity, and polypharmacy, which greatly increases the risk of drug-drug interactions (DDIs) and adverse medical outcomes, have become important and growing challenges in clinical practice. Statins are frequently prescribed to manage post-transplant dyslipidemia and reduce overall cardiovascular risk in solid organ transplant recipients. This study aimed to determine whether rosuvastatin has significant DDIs with tacrolimus (the first-line immunosuppressant) and to evaluate the risk of hepatotoxicity associated with concomitant therapy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.
: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA.
Iptacopan, a first-in-class complement factor B inhibitor acting proximally in the alternative complement pathway, has been shown to be safe and effective for patients with complement-mediated diseases. Iptacopan selectively binds with high affinity to factor B, a soluble, plasma-based, hepatically produced protein. Factor B is abundant in the circulation but can be saturated at the iptacopan clinical dose of 200 mg twice daily.
View Article and Find Full Text PDFOphthalmol Sci
November 2024
A2-Ai, Ann Arbor, Michigan.
Objective: To develop a population pharmacokinetic (PK) model to characterize serum pegcetacoplan concentration-time data after intravitreal administration in patients with geographic atrophy (GA) or neovascular age-related macular degeneration (nAMD).
Design: Pharmacokinetic modeling.
Participants: Two hundred sixty-one patients with GA or nAMD enrolled in 4 clinical studies of pegcetacoplan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!